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Reasoning Under Uncertainty
Over Time

Alice Gao
Lecture 16

Readings: R & N 15.1 to 15.3

Based on work by K. Leyton-Brown, K. Larson, and P. van Beek
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Outline

Learning Goals

Revisiting the Learning goals
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Learning Goals

By the end of the lecture, you should be able to
▶ Construct a hidden Markov model given a real-world scenario.
▶ Perform filtering, prediction, smoothing and derive the most

likely explanation given a hidden Markov model.
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Inference in a Changing World

So far, we can reason probabilistically in a static world.
However, the world evolves over time.

Applications:
▶ weather predictions
▶ stock market predictions
▶ patient monitoring
▶ robot localization
▶ speech and handwriting recognition
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The Umbrella World

You are the security guard stationed at a secret underground
installation. You want to know whether it’s raining today, but your
only access to the outside world occurs each morning when you see
the director coming in with, or without, an umbrella.
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States and Observations

▶ The world contains a series of time slices.
▶ Each time slice contains a set of random variables,

some observable, some not.
Xt the un-observable variables at time t
Et the observable variables at time t

What are the observable and unobservable random variables in the
umbrella world?
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The transition model

How does the current state depend on the previous states?

P(Xt|Xt−1 ∧ Xt−2 ∧ Xt−3 ∧ · · · ∧ X1)

Problem: As t increases, the number of previous states is
unbounded. The conditional probability distribution can be
unboundedly large.

Solutions: Make the Markov assumption — the current state
depends on only a finite fixed number of previous states.
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K-order Markov processes
First-order Markov process:

Xt−2 Xt−1 Xt Xt+1

The transition model:

P(Xt|Xt−1 ∧ Xt−2 ∧ Xt−3 ∧ · · · ∧ X1) = P(Xt|Xt−1)

Second-order Markov process:

Xt−2 Xt−1 Xt Xt+1

The transition model:

P(Xt|Xt−1 ∧ Xt−2 ∧ Xt−3 ∧ · · · ∧ X1) = P(Xt|Xt−1 ∧ Xt−2)
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Transition model for the umbrella world

The future is independent of the past given the present.

Rt−2 Rt−1 Rt Rt+1

The transition model:

P(Rt|Rt−1 ∧ Rt−2 ∧ Rt−3 ∧ · · · ∧ R1) = P(Rt|Rt−1)
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Stationary Process

Is there a different conditional probability distribution for each time
step?

Stationary process:
▶ The dynamics does not change over time.
▶ The conditional probability distribution for each time step

remains the same.
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Transition model for the umbrella world

P(Rt|Rt−1) = 0.7
P(Rt|¬Rt−1) = 0.3

Rt−2 Rt−1 Rt Rt+1
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Sensor model

How does the evidence variable Et for each time step t depend on
the previous and current state variables?

Sensor Markov assumption: Any state is sufficient to generate the
current sensor values.

P(Et|Xt ∧ Xt−1 ∧ · · · ∧ X1 ∧ Et−1 ∧ Et−2 ∧ · · · ∧ E1)
= P(Et|Xt)
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Complete model for the umbrella world

P(R1) = 0.5

P(Rt|Rt−1) = 0.7
P(Rt|¬Rt−1) = 0.3

P(Ut|Rt) = 0.9
P(Ut|¬Rt) = 0.2

Rt−2 Rt−1 Rt Rt+1

Ut−2 Ut−1 Ut Ut+1
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Hidden Markov Model

▶ A Markov process
▶ The state variables are unobservable.
▶ The evidence variables, which depend on the states,

are observable.
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Common Inference Tasks

▶ Filtering: the posterior distribution over the most recent state
given all evidence to date.

▶ Prediction: the posterior distribution over the future state
given all evidence to date.

▶ Smoothing: the posterior distribution over a past state, given
all evidence to date.

▶ Most likely explanation: find the sequence of states that is
most likely to have generated all the evidence to date.
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Filtering

Given xt−1 = P(Rt−1|U1 ∧ · · · ∧ Ut−1),
how do we compute xt = P(Rt|U1 ∧ · · · ∧ Ut)?

Examples: P(R1 = r1|U1) and P(R2 = r2|U1 ∧ U2)
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CQ: Filtered Estimate

CQ: What is P(R1 = t|U1 = t)?
(A) 0.518
(B) 0.618
(C) 0.718
(D) 0.818
(E) 0.918
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Filtered Estimate P(R2 = r2|U1 = u1 ∧ U2 = u2)

P(R2 = r2|U1 = u1 ∧ U2 = u2)

=αP(U2 = u2|R2 = r2)
∑

r1

P(R2 = r2|R1 = r1)P(R1 = r1|U1 = u1)

Forward recursion:
▶ From P(R1 = r1|U1 = u1) to P(R2 = r2|U1 = u1 ∧ U2 = u2)

▶ From P(R2 = r2|U1 = u1 ∧ U2 = u2) to
P(R3 = r3|U1 = u1 ∧ U2 = u2 ∧ U3 = u3)

▶ ...
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CQ: Filtering

CQ: Consider P(U2|R2 ∧ U1).
Which one of the following simplifications is valid?
(A) P(U2|R2 ∧ U1) = P(U2|R2)

(B) P(U2|R2 ∧ U1) = P(U2|U1)

(C) P(U2|R2 ∧ U1) = P(U2)

(D) None of (A), (B), and (C) is a valid simplification.
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CQ: Filtering

CQ: Consider P(R2|R1 ∧ U1).
Which one of the following simplifications is valid?
(A) P(R2|R1 ∧ U1) = P(R2|R1)

(B) P(R2|R1 ∧ U1) = P(R2|U1)

(C) P(R2|R1 ∧ U1) = P(R2)

(D) None of (A), (B), and (C) is a valid simplification.
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Forward Recursion for Filtering

P(Rt|U1 ∧ · · · ∧ Ut)

=αP(Ut|Rt)
∑
Rt−1

P(Rt|Rt−1)P(Rt−1|U1 ∧ · · · ∧ Ut−1)
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Prediction

Given P(Rt+k|U1 ∧ · · · ∧ Ut−1),
how do we compute P(Rt+k+1|U1 ∧ · · · ∧ Ut−1)?

Forward Recursion

P(Rt+k+1|U1 ∧ · · · ∧ Ut−1)

=
∑
Rt+k

P(Rt+k+1|Rt+k)P(Rt+k|U1 ∧ · · · ∧ Ut−1)
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Smoothing
For 1 ≤ k < t,

P(Rk|U1 ∧ . . .Ut)

=αP(Rk|U1 ∧ · · · ∧ Uk)P(Uk+1 ∧ · · · ∧ Ut|Rk)

Forward Recursion

P(Rt|U1 ∧ · · · ∧ Ut)

=αP(Ut|Rt)
∑
Rt−1

P(Rt|Rt−1)P(Rt−1|U1 ∧ · · · ∧ Ut−1)

Backward Recursion

P(Uk+1 ∧ · · · ∧ Ut|Rk)

=
∑
Rk+1

P(Uk+1|Rk+1)P(Uk+2 ∧ · · · ∧ Ut|Rk+1)P(Rk+1|Rk)
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Most likely explanation
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Revisiting the Learning Goals

By the end of the lecture, you should be able to
▶ Construct a hidden Markov model given a real-world scenario.
▶ Perform filtering, prediction, smoothing and derive the most

likely explanation given a hidden Markov model.
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