Constructing Decision Trees

Alice Gao

Lecture 9
Readings: R & N 18.3

Based on work by K. Leyton-Brown, K. Larson, and P. van Beek
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Learning Goals

By the end of the lecture, you should be able to

» Compute the entropy of a probability distribution.
» Compute the expected information gain for selecting a feature.

> Trace the execution of and implement the ID3 algorithm.
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Jeeves the valet - training set

Day | Outlook | Temp | Humidity | Wind | Tennis?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 | Overcast | Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal | Strong No
7 | Overcast | Cool Normal | Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal | Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal | Strong Yes
12 | Overcast | Mild High Strong Yes
13 | Overcast | Hot Normal Weak Yes
14 Rain Mild High Strong No
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Jeeves the valet - the test set

Day | Outlook | Temp | Humidity | Wind | Tennis?
1 Sunny Mild High Strong No
2 Rain Hot Normal | Strong No
3 Rain Cool High Strong No
4 | Overcast | Hot High Strong Yes
5 | Overcast | Cool Normal Weak Yes
6 Rain Hot High Weak Yes
7 | Overcast | Mild Normal | Weak Yes
8 | Overcast | Cool High Weak Yes
9 Rain Cool High Weak Yes
10 Rain Mild Normal | Strong No
11 | Overcast | Mild High Weak Yes
12 Sunny Mild Normal | Weak Yes
13 Sunny Cool High Strong No
14 Sunny Cool High Weak No
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Constructing the "best” decision tree

We want a decision tree to be
» Consistent with all the training examples and
» As small (shallow) as possible.

Unfortunately, it is intractable to find the smallest consistent
decision tree.
Thus, we will use heuristics to find a small consistent tree.
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How do we learn a decision tree?

It is computationally intractable to find the optimal order of

testing features.
The idea of the ID3 algorithm:

» A greedy divide-and-conquer approach.
> Test the most important feature at each step.

> Solve the sub-problems recursively.
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The ID3 algorithm

Algorithm 1 ID3 Algorithm (Features, Examples)

1:
. If all examples are negative, return a leaf node with decision no.

10:

© N a

If all examples are positive, return a leaf node with decision yes.

If no features left, return a leaf node with the majority decision of the
examples.
If no examples left, return a leaf node with the majority decision of
the examples in the parent.
else
choose the most important feature f
for each value v of feature f do
add arc with label v
add subtree ID3(F — f,s € S|f(s) = v)
end for
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Base cases of the ID3 algorithm

No features left:
See notes on the course website.

No examples left:
See notes on the course website.
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Choosing the most important feature

» Want a feature that allows us to make a decision as soon as
possible — reduce uncertainty as much as possible

» Information content of a feature = uncertainty before testing
the feature - uncertainty after testing the feature

» Measure uncertainty using the notion of entropy.

Given a distribution P(cy), ..., P(ck) over k outcomes ci, ..., ¢k, the
entropy of the distribution is

k
I(P(cy), ..., P(ck)) = Z P(ci) logo(P(ci))
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CQ: Entropy of a distribution

CQ: What is the entropy of the distribution (0.5,0.5)?

k
I(P(c1), ..., P(ck)) = Z P(ci) logy(P(ci))
i=1

11/18



CQ: Entropy of a distribution

CQ: What is the entropy of the distribution (0.01,0.99)?

k
I(P(c1), ..., P(ck)) = Z P(ci) logy(P(ci))
i=1
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Entropy of a distribution over two outcomes

Consider a distribution p,1 — p where 0 < p < 1.

» What is the maximum entropy of this distribution?

» What is the minimum entropy of this distribution?
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Expected information gain of testing a feature

Before testing a feature, there are p positive examples and n
negative examples. The entropy before testing the feature is

p n

I

(o)
Suppose that the feature has k values vy, ..., vi. After testing the
feature, for each value v;, there are p; positive examples and n;
negative examples. The expected entropy after testing the feature
is

k
Pi+ni*l( Pi n; )
~ p+n  pitnipitn

The expected information gain is

k
I p n ) — pi+ni*l( pi n; )
p+n' p+n —~ p+n pi+ n;’ pi+ n;
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CQ: Entropy and information gain

CQ: What is the entropy of the examples
before we select a feature for the root node of the tree?
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CQ: Entropy and information gain

CQ: What is the expected information gain
if we select Outlook as the root node of the tree?

(A) 0.237
(B) 0.247
(C) 0.257
(D) 0.267
(E) 0.277
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CQ: Entropy and information gain

CQ: What is the expected information gain
if we select Humidity as the root node of the tree?

(A) 0.151
(B) 0.251
(C) 0.351
(D) 0.451
(E) 0.551
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Revisiting the Learning Goals

By the end of the lecture, you should be able to

» Compute the entropy of a probability distribution.
» Compute the expected information gain for selecting a feature.

> Describe/trace/implement the ID3 algorithm.
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