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1 Learning Goals

By the end of the exercise, you should be able to:

• Calculate prior, posterior, and joint probabilities using the sum rule, the product rule, the
chain rule and Bayes’ rule.

• Given a description of a domain or a probabilistic model for the domain, determine whether
two variables are unconditionally independent.

• Given a description of a domain or a probabilistic model for the domain, determine whether
two variables are conditionally independent given a third variable.
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2 The Holmes scenario

Mr. Holmes lives in a high crime area and therefore has installed a burglar alarm. He relies on
his neighbors to phone him when they hear the alarm sound. Mr. Holmes has two neighbors, Dr.
Watson and Mrs. Gibbon.

Unfortunately, his neighbors are not entirely reliable. Dr. Watson is known to be a tasteless
practical joker and Mrs. Gibbon, while more reliable in general, has occasional drinking problems.

Mr. Holmes also knows from reading the instruction manual of his alarm system that the device is
sensitive to earthquakes and can be triggered by one accidentally. He realizes that if an earthquake
has occurred, it would surely be on the radio news.

3 Practice Questions

3.1 Inferences using the joint distribution

Here is a joint distribution of the three random variables Alarm, Watson and Gibbon.

A ¬A
G ¬G G ¬G

W 0.032 0.048 W 0.036 0.324
¬W 0.008 0.012 ¬W 0.054 0.486

Using the above information to calculate the following probabilities.

1. What is probability that the alarm is NOT going and Dr. Watson is calling?
Solution:

P (¬A ∧W )

= P (¬A ∧W ∧G) + P (¬A ∧W ∧ ¬G)

= 0.036 + 0.324

= 0.36

2. What is probability that the alarm is going and Mrs. Gibbon is NOT calling?
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Solution:

P (A ∧ ¬G)

= P (A ∧W ∧ ¬G) + P (A ∧ ¬W ∧ ¬G)

= 0.048 + 0.012

= 0.06

3. What is the probability that the alarm is NOT going?
Solution:

P (¬A)
= P (¬A ∧W ∧G) + P (¬A ∧ ¬W ∧G) + P (¬A ∧ negW ∧ ¬G) + P (¬A ∧W ∧ ¬G)

= 0.036 + 0.054 + 0.486 + 0.324

= 0.9

4. What is probability that Dr. Watson is calling given that the alarm is NOT going?
Solution:

P (W |¬A)
= P (W ∧ ¬A)/P (¬A)
= 0.36/0.9 = 0.4

5. What is probability that Mrs. Gibbon is NOT calling given that the alarm is going?
Solution:

P (¬G ∧ A)

= P (A ∧W ∧ ¬G) + P (A ∧ ¬W ∧ ¬G)

= 0.048 + 0.012

= 0.06

P (¬G|A)
= P (¬G ∧ A)/P (A)

= 0.06/0.1

= 0.6
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3.2 Inferences using the prior and conditional probabilities

The prior probabilities:

P (A) = 0.1

The conditional probabilities

P (W |A) = 0.9 P (W |¬A) = 0.4 P (G|A) = 0.3 P (G|¬A) = 0.1

P (W |A ∧G) = 0.9

P (W |A ∧ ¬G) = 0.9

P (W |¬A ∧G) = 0.4

P (W |¬A ∧ ¬G) = 0.4

P (G|A ∧W ) = 0.3

P (G|A ∧ ¬W ) = 0.3

P (G|¬A ∧W ) = 0.1

P (G|¬A ∧ ¬W ) = 0.1

Using the above information to calculate the following probabilities:

1. What is probability that the alarm is going, Dr. Watson is calling and Mrs. Gibbon
is NOT calling?
Solution:

P (¬G|A ∧W ) = 1− P (G|A ∧W ) = 1− 0.3 = 0.7

P (A ∧W ∧ ¬G)

= P (A) ∗ P (W |A) ∗ P (¬G|A ∧W )

= 0.1 ∗ 0.9 ∗ 0.7
= 0.063

2. What is probability that the alarm is NOT going, Dr. Watson is NOT calling and
Mrs. Gibbon is NOT calling?
Solution:

P (¬A ∧ ¬W ∧ ¬G)

= P (¬A) ∗ P (¬W |¬A) ∗ P (¬G|¬A ∧ ¬W )

= 0.9 ∗ 0.6 ∗ 0.9
= 0.486

3. What is the probability that the alarm is NOT going given that Dr. Watson is
calling?
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Solution:

P (¬A|W ) =
P (¬A ∧W )

P (W )

=
P (¬A)P (W |¬A)

P (W )

=
P (¬A)P (W |¬A)

P (¬A)P (W |¬A) + P (A)P (W |A)

=
0.9 ∗ 0.4

0.9 ∗ 0.4 + 0.1 ∗ 0.9
= 0.36/0.45 = 0.8

4. What is the probability that the alarm is going given that Mrs. Gibbon is NOT
calling?
Solution:

P (¬G|A) = 1− P (G|A) = 1− 0.3 = 0.7

P (A|¬G)

=
P (A ∧ ¬G)

P (¬G)

=
P (A)P (¬G|A)

P (A)P (¬G|A) + P (¬A)P (¬G|¬A)

=
0.1 ∗ 0.7

0.1 ∗ 0.7 + 0.9 ∗ 0.9
= 0.07/0.88 = 0.080
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3.3 Unconditional and Conditional Independence

Question 1: Burglary, Alarm and Watson

Burglary Alarm Watson

P (B) = 0.1 P (A|B) = 0.9 P (A|¬B) = 0.1

P (W |B ∧ A) = 0.8 P (W |¬B ∧ A) = 0.8 P (W |B ∧ ¬A) = 0.4 P (W |¬B ∧ ¬A) = 0.4

1. Is Burglary independent of Watson?
Solution: No. Burglary is not independent of Watson. The probability of a Burglary
affects the probability of the alarm going off, which in turn affects the probability of Watson
calling. If the probability of a Burglary increases, then the probability of the alarm going
off increases, and the probability of Watson calling will increase as well. If the probability
of Watson calling increases, it must be that the probability that the alarm going off has
increased, which means that the probability of a Burglary must have increased as well. Since
the probabilities of Burglary and Watson affect each other, they are not independent.
To show this formally, it is sufficient to show that P (B) ̸= P (B|W ).

P (B) = 0.1

P (B ∧W )

= P (B ∧ A ∧W ) + P (B ∧ ¬A ∧W )

= P (B)P (A|B)P (W |A ∧B) + P (B)P (¬A|B)P (W |¬A ∧B)

= 0.1 ∗ 0.9 ∗ 0.8 + 0.1 ∗ 0.1 ∗ 0.4
= 0.076

P (¬B ∧W )

= P (¬B)P (A|¬B)P (W |A ∧ ¬B) + P (¬B)P (¬A|¬B)P (W |¬A ∧ ¬B)

= 0.9 ∗ 0.1 ∗ 0.8 + 0.9 ∗ 0.9 ∗ 0.4
= 0.396

P (W )

= P (B ∧W ) + P (¬B ∧W )

= 0.076 + 0.396 = 0.472

P (B|W ) = P (B ∧W )/P (W )

= 0.076/0.472 ≈ 0.161
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2. Is Burglary conditionally independent of Watson given Alarm?
Solution: Yes. Burglary and Watson could only affect each other through Alarm. If we
know whether the alarm is going off or not, then Burglary and Watson cannot affect each
other in any way.
To prove this mathematically, we need to show that all the following equations hold.

P (B|A ∧W ) = P (B|A ∧ ¬W ) = P (B|A)
P (¬B|A ∧W ) = P (¬B|A ∧ ¬W ) = P (¬B|A)
P (B|¬A ∧W ) = P (B|¬A ∧ ¬W ) = P (B|¬A)
P (¬B|¬A ∧W ) = P (¬B|¬A ∧ ¬W ) = P (¬B|¬A)

In fact, it is sufficient to show:

P (B|A ∧W ) = P (B|A ∧ ¬W ) = P (B|A)
P (B|¬A ∧W ) = P (B|¬A ∧ ¬W ) = P (B|¬A)
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P (A)

= P (A|B) ∗ P (B) + P (A|¬B) ∗ P (¬B)

= 0.9 ∗ 0.1 + 0.1 ∗ (1− 0.1) = 0.18

P (B ∧ A ∧W )

= P (W |B ∧ A) ∗ P (A|B) ∗ P (B)

= 0.8 ∗ 0.9 ∗ 0.1 = 0.072

P (B ∧ A ∧ ¬W )

= P (A ∧B)− P (B ∧ A ∧W )

= 0.9 ∗ 0.1− 0.072 = 0.018

P (A ∧W )

= P (A ∧W ∧B) + P (A ∧W ∧ ¬B)

= 0.072 + 0.8 ∗ 0.1 ∗ (1− 0.1) = 0.144

P (A ∧ ¬W )

= P (A)− P (A ∧W )

= 0.18− 0.144 = 0.036

P (B|A ∧W )

= P (B ∧ A ∧W )/P (A ∧W )

= 0.072/0.144 = 0.5

P (B|A ∧ ¬W )

= P (B ∧ A ∧ ¬W )/P (A ∧ ¬W )

= 0.018/0.036 = 0.5

P (B|A) = P (A|B) ∗ P (B)/P (A) = 0.1 ∗ 0.9/0.18 = 0.5

Thus, P (B|A ∧W ) = P (B|A ∧ ¬W ) = P (B|A) = 0.5
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P (B ∧ ¬A ∧W )

= P (W |B ∧ ¬A) ∗ P (¬A|B) ∗ P (B)

= 0.4 ∗ (1− 0.9) ∗ 0.1 = 0.004

P (B ∧ ¬A ∧ ¬W )

= P (B ∧ ¬A)− P (B ∧ ¬A ∧W )

= 0.1 ∗ (1− 0.9)− 0.004 = 0.006

P (¬A ∧W )

= P (B ∧ ¬A ∧W ) + P (¬B ∧ ¬A ∧W )

= 0.004 + 0.4 ∗ (1− 0.1) ∗ (1− 0.1) = 0.328

P (¬A ∧ ¬W )

= P (¬A)− P (¬A ∧W )

= (1− 0.18)− 0.328 = 0.492

P (B|¬A ∧W )

= P (B ∧ ¬A ∧W )/P (¬A ∧W )

= 0.004/0.328 = 0.0122

P (B|¬A ∧ ¬W )

= P (B ∧ ¬A ∧ ¬W )/P (¬A ∧ ¬W )

= 0.006/0.492 = 0.0122

P (B|¬A) = P (B ∧ ¬A)/P (¬A)
= (1− 0.9) ∗ 0.1/(1− 0.18) = 0.0122

Thus, P (B|¬A ∧W ) = P (B|¬A ∧ ¬W ) = P (B|¬A) = 0.0122
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Question 2: Alarm, Watson, and Gibbon

Alarm

Watson

Gibbon

P (A) = 0.1 P (W |A) = 0.8 P (W |¬A) = 0.4

P (G|W ∧ A) = 0.4 P (G|¬W ∧ A) = 0.4 P (G|W ∧ ¬A) = 0.1 P (G|¬W ∧ ¬A) = 0.1

1. Is Watson independent of Gibbon?
Solution: No. Watson is not independent of Gibbon. If Watson is more likely to call, then
this must mean that the alarm is more likely to go off, which means that Gibbon is more
likely to call as well. Therefore, changing the probability of Watson calling also changes the
probability of Gibbon calling. Watson and Gibbon affect each other because they are both
caused by the alarm going off.
To show this formally, we can show that P (G) ̸= P (G|W ), as follows.

P (G ∧W )

= P (A ∧W ∧G) + P (¬A ∧W ∧G)

= 0.1 ∗ 0.8 ∗ 0.4 + 0.9 ∗ 0.4 ∗ 0.1 = 0.068

P (G ∧ ¬W )

= P (A ∧ ¬W ∧G) + P (¬A ∧ ¬W ∧G)

= 0.1 ∗ 0.2 ∗ 0.4 + 0.9 ∗ 0.6 ∗ 0.1 = 0.062

P (G)

= P (G ∧W ) + P (G ∧ ¬W )

= 0.068 + 0.062 = 0.13

P (W ) = P (A)P (W |A) + P (¬A)P (W |¬A)
= 0.1 ∗ 0.8 + 0.9 ∗ 0.4 = 0.44

P (G|W )

= P (G ∧W )/P (W )

= 0.068/0.44 ≈ 0.155

You can see that, if we know that Watson is calling, then we believe that the probability of
Gibbon calling increased from 0.13 to 0.155.
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2. Is Watson independent of Gibbon given Alarm?
Solution: Yes, Watson and Gibbon are conditionally independent given Alarm. The only
way for Watson and Gibbon to affect each other is through Alarm. If we know whether the
alarm is going off or not, then knowing whether Watson is calling does not affect our belief
of whether Gibbon is calling.
To prove this formally, we need to verify all the following equations.

P (G|W ∧ A) = P (G|¬W ∧ A) = P (G|A)
P (G|W ∧ ¬A) = P (G|¬W ∧ ¬A) = P (G|¬A)

P (G|W ∧ A) = P (G|¬W ∧ A) = 0.4

P (G ∧ A)

= P (G ∧W ∧ A) + P (G ∧ ¬W ∧ A)

= 0.1 ∗ 0.8 ∗ 0.4 + 0.1 ∗ 0.2 ∗ 0.4 = 0.04

P (G|A)
= P (G ∧ A)/P (A)

= 0.04/0.1 = 0.4

P (G|W ∧ ¬A) = (G|¬W ∧ ¬A) = 0.1

P (G ∧ ¬A)
= P (G ∧W ∧ ¬A) + P (G ∧ ¬W ∧ ¬A)
= 0.1 ∗ 0.4 ∗ 0.9 + 0.1 ∗ 0.6 ∗ 0.9 = 0.09

P (G|¬A)
= P (G ∧ ¬A)/P (¬A)
= 0.09/0.9 = 0.1
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Question 3: Earthquake, Burglary and Alarm

Alarm

Earthquake

Burglary

P (E) = 0.1 P (B|E) = 0.2 P (B|¬E) = 0.2

P (A|B ∧ E) = 0.9 P (A|¬B ∧ E) = 0.2 P (A|B ∧ ¬E) = 0.8 P (A|¬B ∧ ¬E) = 0.1

1. Is Earthquake independent of Burglary?
Solution: Yes. Earthquake is independent of Burglary (assuming that looting is not more
common during an earthquake.)
To show this formally, we need to verify the following equation:

P (B|E) = P (B|¬E) = P (B)

P (B|E) = P (B|¬E) = 0.2

P (B) = P (B|E) ∗ P (E) + P (B|¬E) ∗ P (¬E)

= 0.2 ∗ 0.1 + 0.2 ∗ (1− 0.1) = 0.2
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2. Is Earthquake conditionally independent of Burglary given Alarm?
Solution: No, Earthquake is not conditionally independent of Burglary given Alarm. If an
earthquake is happening, then it is less likely that the alarm going off is caused by a burglary.

P (E|B ∧ A) ̸= P (E|¬B ∧ A)

P (E ∧B ∧ A)

= P (E)P (B|E)P (A|B ∧ E)

= 0.1 ∗ 0.2 ∗ 0.9 = 0.018

P (¬E ∧B ∧ A)

= 0.9 ∗ 0.2 ∗ 0.8 = 0.144

P (B ∧ A)

= P (E ∧B ∧ A) + P (¬E ∧B ∧ A)

= 0.018 + 0.144 = 0.162

P (E|B ∧ A) = P (E ∧B ∧ A)/P (B ∧ A) = 0.018/0.162 ≈ 0.11

P (E ∧ ¬B ∧ A)

= P (E)P (¬B|E)P (A|¬B ∧ E)

= 0.1 ∗ 0.8 ∗ 0.2 = 0.016

P (¬E ∧ ¬B ∧ A)

= 0.9 ∗ 0.8 ∗ 0.1 = 0.072

P (¬B ∧ A)

= P (E ∧ ¬B ∧ A) + P (¬E ∧ ¬B ∧ A)

= 0.016 + 0.072 = 0.088

P (E|¬B ∧ A) = P (E ∧ ¬B ∧ A)/P (B ∧ A) = 0.016/0.088 ≈ 0.182

Knowing that the alarm is going off, if a burglary is happening, then it is less likely that an
earthquake is happening.
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