
CS 486/686 CSP by Zhengmin Zhang and Alice Gao 1

Contents

1 Learning Goals 1

2 The 4-Queens Problem 2

2.1 The CSP formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 The AC-3 Arc Consistency Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Backtracking Search with Arc Consistency . . . . . . . . . . . . . . . . . . . . . . . 3

3 Practice Questions 4

3.1 Arc Consistency with an Initial Assignment . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Backtracking Search with Forward Checking . . . . . . . . . . . . . . . . . . . . . . 10

1 Learning Goals

By the end of the exercise, you should be able to

• Formulate a real-world problem as a constraint satisfaction problem by defining variables,
domains, and constraints.

• Trace the execution of the backtracking search algorithm with the full AC-3 arc consistency
algorithm on the 4-queens problem.

• Trace the execution of the backtracking search algorithm with forward checking on the 4-
queens problem.



CS 486/686 CSP by Zhengmin Zhang and Alice Gao 2

2 The 4-Queens Problem

The 4-queens problem consists of a 4x4 chessboard with 4 queens. The goal is to place the 4 queens
on the chessboard such that no two queens can attack each other. Each queen attacks anything
in the same row, in the same column, or in the same diagonal.

2.1 The CSP formulation

Formulate the state of the 4-queens problem below.

• Assume that exactly one queen is in each column. Given this, we only need to keep track of
the row position of each queen.

• Variables: x0, x1, x2, x3 where xi is the row position of the queen in column i, where i ∈
{0, 1, 2, 3}.

• Domains: dom(xi) = {0, 1, 2, 3} for all xi.

• Constraints: No pair of queens are in the same row or diagonal.

(∀i(∀j((i ̸= j)→ ((xi ̸= xj) ∧ (|xi − xj| ̸= |i− j|)))))

All the constraints are explicitly given below.
((x0 ̸= x1)∧ (|x0− x1| ̸= 1)∧ (x0 ̸= x2)∧ (|x0− x2| ̸= 2)∧ (x0 ̸= x3)∧ (|x0− x3| ̸= 3)∧ (x1 ̸=
x2) ∧ (|x1 − x2| ̸= 1) ∧ (x1 ̸= x3) ∧ (|x1 − x3| ̸= 2) ∧ (x2 ̸= x3) ∧ (|x2 − x3| ̸= 1))

Formulate the 4-queens problem as a CSP below.

• State: one queen per column in the leftmost k columns with no pair of queens attacking each
other.

• Initial state: no queens on the board.

• Goal state: 4 queens on the board. No pair of queens are attacking each other.

• Successor function: add a queen to the leftmost empty column such that it is not attacked
by any other existing queen.



CS 486/686 CSP by Zhengmin Zhang and Alice Gao 3

2.2 The AC-3 Arc Consistency Algorithm

Algorithm 1 Revise(Xi, C)

1: revised ← false
2: for x in dom(Xi) do
3: if ¬∃ y ∈ dom(Xj) s.t. (x, y) satisfies the constraint C then
4: remove x from dom(Xi)
5: revised ← true
6: end if
7: end for
8: return revised

Algorithm 2 The AC-3 Algorithm
1: Put (v, C) in the set S for every variable v and every constraint involving v.
2: while S is not empty do
3: remove (Xi, Cij) from S (Cij is a constraint between Xi and Xj.)
4: if Revise(Xi, Cij) then
5: if dom(Xi) is empty then return false
6: for Xk where Cki is a constraint between Xk and Xi do
7: add (Xk, Cki) to S
8: end for
9: end if

10: end while
11: return true

2.3 Backtracking Search with Arc Consistency

Algorithm 3 BACKTRACK-INFERENCES(assignment, csp)
1: if assignment is complete then return true
2: var ← SELECT-UNASSIGNED-VARIABLE(csp)
3: for all value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
4: if adding {var = value} satisfies every constraint then
5: add {var = value} to assignment
6: inf-result ← INFERENCES(assignment, csp)
7: if inf-result is true then
8: add the inference results to assignment
9: result ← BACKTRACK(assignment, csp)

10: if result is true then return result
11: end if
12: end if
13: remove {var = value} and the inference results from assignment
14: end for
15: return false



CS 486/686 CSP by Zhengmin Zhang and Alice Gao 4

3 Practice Questions

3.1 Arc Consistency with an Initial Assignment

Start with an initial assignment of x0 = 0 for the 4-queens problem. Let’s execute the AC-3
algorithm.

The starting domains and assignment:

x0 = 0, dom(x1) ∈ {0, 1, 2, 3}, dom(x2) ∈ {0, 1, 2, 3}, and dom(x3) ∈ {0, 1, 2, 3}

The set of variable-constraint pairs:

(x0, x0 ̸= x1), (x1, x0 ̸= x1), (x0, x0 ̸= x2), (x2, x0 ̸= x2), (x0, x0 ̸= x3), (x3, x0 ̸= x3), (x1, x1 ̸= x2),
(x2, x1 ̸= x2), (x1, x1 ̸= x3), (x3, x1 ̸= x3), (x2, x2 ̸= x3), (x3, x2 ̸= x3), (x0, |x0 − x1| ̸= 1),
(x1, |x0 − x1| ̸= 1), (x0, |x0 − x2| ̸= 2), (x2, |x0 − x2| ̸= 2), (x0, |x0 − x3| ̸= 3), (x3, |x0 − x3| ̸= 3),
(x1, |x1 − x2| ̸= 1), (x2, |x1 − x2| ̸= 1), (x1, |x1 − x3| ̸= 2), (x3, |x1 − x3| ̸= 2), (x2, |x2 − x3| ̸= 1),
(x3, |x2 − x3| ̸= 1).

Note that every constraint appears in exactly two pairs, one for each variable in the constraint.

Below, we will write out the details of a few steps. Executing the AC-3 algorithm from start to
finish will take roughly 24 steps. I encourage you to trace through all the execution steps on your
own.

Answer the three questions below.

Question 1:

Let the starting domains and assignment be

x0 = 0, dom(x1) ∈ {0, 1, 2, 3}, dom(x2) ∈ {0, 1, 2, 3}, and dom(x3) ∈ {0, 1, 2, 3}

Suppose that we remove the pair (x0, x0 ̸= x1) from the set.

Describe any change to the domain of the variable.

Solution: x0 is arc-consistent with respect to x1 for the constraint x0 ̸= x1. We do not need to
change the domain of x0.

Describe any variable-constraint pairs that we need to add back to the set.



CS 486/686 CSP by Zhengmin Zhang and Alice Gao 5

Solution: We do not need to add any pairs back because we did not change the domain of x0.

Question 2:

Let the starting domains and assignment be

x0 = 0, dom(x1) ∈ {0, 1, 2, 3}, dom(x2) ∈ {0, 1, 2, 3}, and dom(x3) ∈ {0, 1, 2, 3}

Suppose that we remove the pair (x1, x0 ̸= x1) from the set.

Describe any change to the domain of the variable.

Solution: If x1 = 0, there no value for x0 such that x0 ̸= x1. Therefore, we need to remove 0 from
dom(x1).

Describe any variable-constraint pairs that we need to add back to the set.

Solution: We will need to add back the following pairs if they are not in the set already.

(x0, x0 ̸= x1), (x2, x1 ̸= x2), (x3, x1 ̸= x3), (x0, |x0−x1| ̸= 1), (x2, |x1−x2| ̸= 1), (x3, |x1−x3| ̸= 2).

Question 3:

Let the starting domains and assignment be

x0 = 0, dom(x1) ∈ {2, 3}, dom(x2) ∈ {1, 3}, and dom(x3) ∈ {1, 2}

Suppose that we remove the pair (x3, |x2 − x3| ̸= 1) from the set.

Describe any change to the domain of the variable.

Solution: If x3 = 2, there is no value for x2 such that |x2−x3| ̸= 1. Therefore, we need to remove
2 from dom(x3).

Describe any variable-constraint pairs that we need to add back to the set.

Solution: We will need to add back the following pairs if they are not in the set already.

(x2, x2 ̸= x3), (x0, x0 ̸= x3), (x1, x1 ̸= x3), (x0, |x0− x3| ̸= 3), (x1, |x1− x3| ̸= 2), (x2, |x2− x3| ̸= 1)

Solution:

Start with an initial assignment of x0 = 0 for the 4-queens problem. Execute the AC-3 algorithm.



CS 486/686 CSP by Zhengmin Zhang and Alice Gao 6

1. Remove (x0, x0 ̸= x1)

No change to domains

2. Remove (x1, x0 ̸= x1)

Remove 0 from dom(x1).
Domains: x0 = 0, dom(x1) = {1, 2, 3}, dom(x2) = {0, 1, 2, 3}, and dom(x3) = {0, 1, 2, 3}
Add back constraints (x0, x0 ̸= x1), (x2, x1 ̸= x2), (x3, x1 ̸= x3), (x0, |x0−x1| ̸= 1), (x2, |x1−
x2| ̸= 1), (x3, |x1 − x3| ̸= 2).
Constraints: (x0, x0 ̸= x2), (x2, x0 ̸= x2), (x0, x0 ̸= x3), (x3, x0 ̸= x3), (x1, x1 ̸= x2), (x2, x1 ̸=
x2), (x1, x1 ̸= x3), (x3, x1 ̸= x3), (x2, x2 ̸= x3), (x3, x2 ̸= x3), (x0, |x0 − x1| ̸= 1), (x1, |x0 −
x1| ̸= 1), (x0, |x0 − x2| ̸= 2), (x2, |x0 − x2| ̸= 2), (x0, |x0 − x3| ̸= 3), (x3, |x0 − x3| ̸= 3),
(x1, |x1−x2| ̸= 1), (x2, |x1−x2| ̸= 1), (x1, |x1−x3| ̸= 2), (x3, |x1−x3| ̸= 2), (x2, |x2−x3| ̸= 1),
(x3, |x2 − x3| ̸= 1), (x0, x0 ̸= x1).

3. Remove (x0, x0 ̸= x2)

No change to domains

4. Remove (x2, x0 ̸= x2)

Remove 0 from dom(x2)

Domains: x0 = 0, dom(x1) = {1, 2, 3}, dom(x2) = {1, 2, 3}, and dom(x3) = {0, 1, 2, 3}
Add back constraints (x0, x0 ̸= x2), (x1, x1 ̸= x2), (x3, x2 ̸= x3), (x0, |x0−x2| ̸= 2), (x1, |x1−
x2| ̸= 1), (x3, |x2 − x3| ̸= 1).
Constraints: (x0, x0 ̸= x3), (x3, x0 ̸= x3), (x1, x1 ̸= x2), (x2, x1 ̸= x2), (x1, x1 ̸= x3), (x3, x1 ̸=
x3), (x2, x2 ̸= x3), (x3, x2 ̸= x3), (x0, |x0 − x1| ̸= 1), (x1, |x0 − x1| ̸= 1), (x0, |x0 − x2| ̸= 2),
(x2, |x0−x2| ̸= 2), (x0, |x0−x3| ̸= 3), (x3, |x0−x3| ̸= 3), (x1, |x1−x2| ̸= 1), (x2, |x1−x2| ̸= 1),
(x1, |x1 − x3| ̸= 2), (x3, |x1 − x3| ̸= 2), (x2, |x2 − x3| ̸= 1), (x3, |x2 − x3| ̸= 1), (x0, x0 ≠ x1),
(x0, x0 ̸= x2).

5. Remove (x0, x0 ̸= x3)

No change to domains

6. Remove (x3, x0 ̸= x3)

Remove 0 from dom(x3)

Domains: x0 = 0, dom(x1) = {1, 2, 3}, dom(x2) = {1, 2, 3}, and dom(x3) = {1, 2, 3}
Add back constraints (x0, x0 ̸= x3), (x1, x1 ̸= x3), (x2, x2 ̸= x3), (x0, |x0−x3| ̸= 3), (x1, |x1−
x3| ̸= 2), (x2, |x2 − x3| ̸= 1).
Constraints: (x1, x1 ̸= x2), (x2, x1 ̸= x2), (x1, x1 ̸= x3), (x3, x1 ̸= x3), (x2, x2 ̸= x3), (x3, x2 ̸=
x3), (x0, |x0 − x1| ̸= 1), (x1, |x0 − x1| ̸= 1), (x0, |x0 − x2| ̸= 2), (x2, |x0 − x2| ̸= 2), (x0, |x0 −
x3| ̸= 3), (x3, |x0 − x3| ̸= 3), (x1, |x1 − x2| ̸= 1), (x2, |x1 − x2| ̸= 1), (x1, |x1 − x3| ̸= 2),
(x3, |x1 − x3| ̸= 2), (x2, |x2 − x3| ̸= 1), (x3, |x2 − x3| ≠ 1), (x0, x0 ̸= x1), (x0, x0 ̸= x2),
(x0, x0 ̸= x3).



CS 486/686 CSP by Zhengmin Zhang and Alice Gao 7

7. Remove (x1, x1 ̸= x2)

No change to domains

8. Remove (x2, x1 ̸= x2)

No change to domains

9. Remove (x1, x1 ̸= x3)

No change to domains

10. Remove (x3, x1 ̸= x3)

No change to domains

11. Remove (x2, x2 ̸= x3)

No change to domains

12. Remove (x3, x2 ̸= x3)

No change to domains

13. Remove (x0, |x0 − x1| ̸= 1)

No change to domains

14. Remove (x1, |x0 − x1| ̸= 1)

Remove 1 from dom(x1)

Add back constraints (x0, x0 ̸= x1), (x2, x1 ̸= x2), (x3, x1 ̸= x3), (x0, |x0−x1| ̸= 1), (x2, |x1−
x2| ̸= 1), (x3, |x1 − x3| ̸= 2).
Domains: x0 = 0, dom(x1) = {2, 3}, dom(x2) = {1, 2, 3}, and dom(x3) = {1, 2, 3}
Constraints: (x0, |x0 − x2| ̸= 2), (x2, |x0 − x2| ̸= 2), (x0, |x0 − x3| ̸= 3), (x3, |x0 − x3| ̸= 3),
(x1, |x1−x2| ̸= 1), (x2, |x1−x2| ̸= 1), (x1, |x1−x3| ̸= 2), (x3, |x1−x3| ̸= 2), (x2, |x2−x3| ̸= 1),
(x3, |x2 − x3| ̸= 1), (x0, x0 ̸= x1), (x0, x0 ̸= x2), (x0, x0 ̸= x3), (x2, x1 ̸= x2), (x3, x1 ̸= x3).

15. Remove (x0, |x0 − x2| ̸= 2)

No change to domains

16. Remove (x2, |x0 − x2| ̸= 2)

Remove 2 from dom(x2).
Add back constraints (x0, x0 ̸= x2), (x1, x1 ̸= x2), (x3, x2 ̸= x3), (x0, |x0−x2| ̸= 2), (x1, |x1−
x2| ̸= 1), (x3, |x2 − x3| ̸= 1).
Domains: x0 = 0, dom(x1) = {2, 3}, dom(x2) = {1, 3}, and dom(x3) = {1, 2, 3}
Constraints: (x0, |x0 − x3| ̸= 3), (x3, |x0 − x3| ̸= 3), (x1, |x1 − x2| ̸= 1), (x2, |x1 − x2| ̸= 1),
(x1, |x1 − x3| ̸= 2), (x3, |x1 − x3| ̸= 2), (x2, |x2 − x3| ̸= 1), (x3, |x2 − x3| ̸= 1), (x0, x0 ̸= x1),
(x0, x0 ̸= x2), (x0, x0 ̸= x3), (x2, x1 ̸= x2), (x3, x1 ̸= x3), (x1, x1 ̸= x2), (x3, x2 ̸= x3),
(x0, |x0 − x2| ̸= 2).



CS 486/686 CSP by Zhengmin Zhang and Alice Gao 8

17. Remove (x0, |x0 − x3| ̸= 3)

No change to domains

18. Remove (x3, |x0 − x3| ̸= 3)

Remove 3 from dom(x3).
Add back constraints (x0, x0 ̸= x3), (x1, x1 ̸= x3), (x2, x2 ̸= x3), (x0, |x0−x3| ̸= 3), (x1, |x1−
x3| ̸= 2), (x2, |x2 − x3| ̸= 1).
Domains: x0 = 0, dom(x1) = {2, 3}, dom(x2) = {1, 3}, and dom(x3) = {1, 2}
Constraints: (x1, |x1 − x2| ̸= 1), (x2, |x1 − x2| ̸= 1), (x1, |x1 − x3| ̸= 2), (x3, |x1 − x3| ̸= 2),
(x2, |x2−x3| ̸= 1), (x3, |x2−x3| ̸= 1), (x0, x0 ̸= x1), (x0, x0 ̸= x2), (x0, x0 ̸= x3), (x2, x1 ̸= x2),
(x3, x1 ̸= x3), (x1, x1 ̸= x2), (x3, x2 ̸= x3), (x0, |x0 − x2| ̸= 2), (x1, x1 ̸= x3), (x2, x2 ̸= x3),
(x0, |x0 − x3| ̸= 3).

19. Remove (x1, |x1 − x2| ̸= 1)

Remove 2 from dom(x1).
Add back constraints (x0, x0 ̸= x1), (x2, x1 ̸= x2), (x3, x1 ̸= x3), (x0, |x0−x1| ̸= 1), (x2, |x1−
x2| ̸= 1), (x3, |x1 − x3| ̸= 2).
Domains: x0 = 0, dom(x1) = {3}, dom(x2) = {1, 3}, and dom(x3) = {1, 2}
Constraints: (x2, |x1 − x2| ̸= 1), (x1, |x1 − x3| ̸= 2), (x3, |x1 − x3| ̸= 2), (x2, |x2 − x3| ̸= 1),
(x3, |x2 − x3| ̸= 1), (x0, x0 ̸= x1), (x0, x0 ̸= x2), (x0, x0 ̸= x3), (x2, x1 ̸= x2), (x3, x1 ̸= x3),
(x1, x1 ̸= x2), (x3, x2 ̸= x3), (x0, |x0−x2| ̸= 2), (x1, x1 ̸= x3), (x2, x2 ̸= x3), (x0, |x0−x3| ̸= 3),
(x0, |x0 − x1| ̸= 1).

20. Remove (x2, |x1 − x2| ̸= 1)

No change to domains

21. Remove (x1, |x1 − x3| ̸= 2)

No change to domains

22. Remove (x3, |x1 − x3| ̸= 2)

Remove 1 from dom(x3).
Add back constraints (x0, x0 ̸= x3), (x1, x1 ̸= x3), (x2, x2 ̸= x3), (x0, |x0−x3| ̸= 3), (x1, |x1−
x3| ̸= 2), (x2, |x2 − x3| ̸= 1).
Domains: x0 = 0, dom(x1) = {3}, dom(x2) = {1, 3}, and dom(x3) = {2}
Constraints: (x2, |x2−x3| ̸= 1), (x3, |x2−x3| ̸= 1), (x0, x0 ̸= x1), (x0, x0 ̸= x2), (x0, x0 ̸= x3),
(x2, x1 ̸= x2), (x3, x1 ̸= x3), (x1, x1 ̸= x2), (x3, x2 ̸= x3), (x0, |x0 − x2| ̸= 2), (x1, x1 ̸= x3),
(x2, x2 ̸= x3), (x0, |x0 − x3| ̸= 3), (x0, |x0 − x1| ̸= 1), (x1, |x1 − x3| ̸= 2).

23. Remove (x2, |x2 − x3| ̸= 1)

Remove 1 and 3 from dom(x2).



CS 486/686 CSP by Zhengmin Zhang and Alice Gao 9

Domains: x0 = 0, dom(x1) = {3}, dom(x2) = {}, and dom(x3) = {2}
Constraints: (x2, |x2−x3| ̸= 1), (x3, |x2−x3| ̸= 1), (x0, x0 ̸= x1), (x0, x0 ̸= x2), (x0, x0 ̸= x3),
(x2, x1 ̸= x2), (x3, x1 ̸= x3), (x1, x1 ̸= x2), (x3, x2 ̸= x3), (x0, |x0 − x2| ̸= 2), (x1, x1 ̸= x3),
(x2, x2 ̸= x3), (x0, |x0 − x3| ̸= 3), (x0, |x0 − x1| ̸= 1), (x1, |x1 − x3| ̸= 2).
No solution since the domain of x2 is empty.



CS 486/686 CSP by Zhengmin Zhang and Alice Gao 10

3.2 Backtracking Search with Forward Checking

Start with an initial assignment of x0 = 0 for the 4-queens problem. Execute the backtracking
search algorithm with forward checking until a solution is reached.

The starting domains and assignment:

x0 = 0, dom(x1) = {0, 1, 2, 3}, dom(x2) = {0, 1, 2, 3}, and dom(x3) = {0, 1, 2, 3}

Choose variables and values using the following conventions.

• When choosing which variable to assign value to, always choose the left most unassigned
variable.

• When choosing which value to assign to a variable, always choose the top unassigned value.

Show the steps of backtracking search with forward checking below.

Solution:

1. Assign x0 = 0.
Domains and assignments: x0 = 0, dom(x1) = {0, 1, 2, 3}, dom(x2) = {0, 1, 2, 3}, and
dom(x3) = {0, 1, 2, 3}
Forward checking:

• Remove 0 from dom(x1) since x0 ̸= x1

• Remove 1 from dom(x1) since |x0 − x1| ̸= 1

• Remove 0 from dom(x2) since x0 ̸= x2

• Remove 2 from dom(x2) since |x0 − x2| ̸= 2

• Remove 0 from dom(x3) since x0 ̸= x3

• Remove 3 from dom(x3) since |x0 − x3| ̸= 3

Updated domains and assignment: x0 = 0, dom(x1) = {2, 3}, dom(x2) = {1, 3}, and
dom(x3) = {1, 2}

2. Assign x1 = 2.
Domains and assignments: x0 = 0, x1 = 2, dom(x2) = {1, 3}, and dom(x3) = {1, 2}
Forward Checking:

• Remove 1 from dom(x2) since |x1 − x2| ̸= 1

• Remove 3 from dom(x2) since |x1 − x2| ̸= 1



CS 486/686 CSP by Zhengmin Zhang and Alice Gao 11

Updated domains and assignments: x0 = 0, x1 = 2, dom(x2) = {}, and dom(x3) = {1, 2}
This attempt yields no solution since dom(x2) is empty.
Backtrack!

3. Assign x1 = 3.
Domains and assignments: x0 = 0, x1 = 3, dom(x2) = {1, 3}, and dom(x3) = {1, 2}
Forward Checking:

• Remove 3 from dom(x2) since x1 ̸= x2

• Remove 1 from dom(x3) since |x1 − x3| ̸= 2

Updated domains and assignments: x0 = 0, x1 = 3, dom(x2) = {1}, and dom(x3) = {2}

4. Assign x2 = 1.
Domains and assignments: x0 = 0, x1 = 3, x2 = 1, and dom(x3) = {2}
Forward Checking:

• Remove 2 from dom(x3) since |x2 − x3| ̸= 1

Updated domains and assignments: x0 = 0, x1 = 3, x2 = 1, and dom(x3) = {}
This attempt yields no solution since dom(x3) is empty.
Backtrack!

5. Assign x0 = 1.
Domains and assignments: x0 = 1, dom(x1) = {0, 1, 2, 3}, dom(x2) = {0, 1, 2, 3}, and
dom(x3) = {0, 1, 2, 3}
Forward Checking:

• Remove 0 from dom(x1) since |x0 − x1| ̸= 1

• Remove 1 from dom(x1) since x0 ̸= x1

• Remove 2 from dom(x1) since |x0 − x1| ̸= 1

• Remove 1 from dom(x2) since x0 ̸= x2

• Remove 3 from dom(x2) since |x0 − x2| ̸= 2

• Remove 1 from dom(x3) since x0 ̸= x3

Updated domains and assignments: x0 = 1, dom(x1) = {3}, dom(x2) = {0, 2}, and
dom(x3) = {0, 2, 3}

6. Assign x1 = 3.
Domains and assignments: x0 = 1, x1 = 3, dom(x2) = {0, 2}, and dom(x3) = {0, 2, 3}
Forward Checking:

• Remove 2 from dom(x2) since |x1 − x2| ̸= 1

• Remove 3 from dom(x3) since x1 ̸= x3



CS 486/686 CSP by Zhengmin Zhang and Alice Gao 12

Updated domains and assignments: x0 = 1, x1 = 3, dom(x2) = {0}, and dom(x3) = {0, 2}

7. Assign x2 = 0.
Domains and assignments: x0 = 1, x1 = 3, x2 = 0, and dom(x3) = {0, 2}
Forward Checking:

• Remove 0 from dom(x3) since x2 ̸= x3

Updated domains and assignments: x0 = 1, x1 = 3, x2 = 0, and dom(x3) = {2}

8. Assign x3 = 2.
A solution is reached!
Solution: x0 = 1, x1 = 3, x2 = 0, and x3 = 2.

Solution: See the search tree of backtracking search and forward checking below.



CS 486/686 CSP by Zhengmin Zhang and Alice Gao 13


	Learning Goals
	The 4-Queens Problem
	The CSP formulation
	The AC-3 Arc Consistency Algorithm
	Backtracking Search with Arc Consistency

	Practice Questions
	Arc Consistency with an Initial Assignment
	Backtracking Search with Forward Checking


