The Value Iteration Algorithm

Alice Gao Lecture 19 Readings: RN 17.2, 17.3. PM 9.5.2, 9.5.3.

CS 486/686: Intro to Artificial Intelligence

Alice Gao 1 / 24

Learning Goals

Solving for $V^*(s)$ using Value Iteration

Policy Iteration

Revisiting the Learning goals

CS 486/686: Intro to Artificial Intelligence

Alice Gao 2 / 24

By the end of the lecture, you should be able to

- Trace the execution of and implement the value iteration algorithm for solving a Markov Decision Process.
- Trace the execution of and implement the policy iteration algorithm for solving a Markov Decision Process.

Learning Goals

Solving for $V^{\ast}(s)$ using Value Iteration

Policy Iteration

Revisiting the Learning goals

Solving for $V^*(s)$

V and Q are defined recursively in terms of each other.

$$V^*(s) = R(s) + \gamma \max_a Q^*(s, a)$$
 (1)

$$Q^*(s,a) = \sum_{s'} P(s'|s,a) V^*(s').$$
 (2)

Combining equations 1 and 2, we get the Bellman equations:

$$V^{*}(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V^{*}(s').$$
(3)

 $V^*(s)$ are the unique solution to the Bellman equations.

CS 486/686: Intro to Artificial Intelligence

Write down $V^*(s_{11})$

Write down the Bellman equation for $V^*(s_{11})$.

CQ: Solve the Bellman equations efficiently

CQ: Can we solve the system of Bellman equations efficiently?

- (A) Yes
- (B) No
- (C) I don't know

The Bellman equation for $V^*(s_{11})$:

$$V^{*}(s_{11}) = -0.04 + \gamma \max[0.8V^{*}(s_{12}) + 0.1V^{*}(s_{21}) + 0.1V^{*}(s_{11}), 0.9V^{*}(s_{11}) + 0.1V^{*}(s_{12}), 0.9V^{*}(s_{11}) + 0.1V^{*}(s_{21}), 0.8V^{*}(s_{21}) + 0.1V^{*}(s_{12}) + 0.1V^{*}(s_{11})].$$

Solving for $V^*(s)$ iteratively

The Bellman equations:

$$V^*(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V^*(s').$$

Let $V_i(s)$ be the values for the i-th iteration.

- 1. Start with arbitrary initial values for $V_0(s)$.
- 2. At the i-th iteration, compute $V_{i+1}(s)$ as follows.

$$V_{i+1}(s) \leftarrow R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_i(s')$$

3. Terminate when $\max_{s} |V_i(s) - V_{i+1}(s)|$ is small enough.

If we apply the Bellman update infinitely often, the V_i 's are guaranteed to converge to the optimal values. Let's apply the value iteration algorithm.

Assume that

- the discount factor $\gamma = 1$.
- ▶ $R(s) = -0.04, \forall s \neq s_{24}, s \neq s_{34}.$

Start with $V_0(s) = 0, \forall s \neq s_{24}, s \neq s_{34}.$

CQ: Calculating $V_1(s_{23})$

CQ: What is $V_1(s_{23})$?

(A) $(-\infty, 0)$ (B) [0, 0.25) (C) [0.25, 0.5)(D) [0.5, 0.75) (E) [0.75, 1]

 $V_0(s)$:

	1	2	3	4
1	0	0	0	0
2	0	Х	0	-1
3	0	0	0	+1

CQ: Calculating $V_1(s_{33})$

CQ: What is $V_1(s_{33})$?

(A) 0.26 (B) 0.36 (C) 0.46 (D) 0.56 (E) 0.76

 $V_0(s)$:

	1	2	3	4
1	0	0	0	0
2	0	Х	0	-1
3	0	0	0	+1

The Values of $V_1(s)$

 $V_0(s)$:

	1	2	3	4
1	0	0	0	0
2	0	Х	0	-1
3	0	0	0	+1

 $V_1(s)$:

	1	2	3	4
1				
2		Х		-1
3				+1

CQ: Calculating $V_2(s_{33})$

CQ: What is V₂(s₃₃)?
(A) 0.822
(B) 0.832
(C) 0.842
(D) 0.852
(E) 0.862

CQ: Calculating $V_2(s_{23})$

CQ: What is V₂(s₂₃)?
(A) 0.464
(B) 0.466
(C) 0.468
(D) 0.470
(E) 0.472

```
CQ: Calculating V_2(s_{32})
```

CQ: What is V₂(s₃₂)?
(A) 0.16
(B) 0.36
(C) 0.56
(D) 0.76
(E) 0.96

The Values of $V_2(s)$

 $V_1(s)$:

	1	2	3	4
1	-0.04	-0.04	-0.04	-0.04
2	-0.04	Х	-0.04	-1
3	-0.04	-0.04	0.76	+1

 $V_2(s)$:

	1	2	3	4
1				
2		Х		-1
3				+1

Each state accumulates negative rewards until the algorithm finds a path to the +1 goal state.

How should we update $V^*(s)$ for all states s?

- ▶ synchronous: store and use $V_i(s)$ to calculate $V_{i+1}(s)$.
- ▶ asynchronous: stores V_i(s) and update the values one at a time, in any order.

Learning Goals

Solving for $V^*(s)$ using Value Iteration

Policy Iteration

Revisiting the Learning goals

- Deriving the optimal policy does not require accurate estimates of the utility function (V*(s)).
- Policy iteration alternates between two steps.
 - Policy evaluation: Given a policy π_i, calculate V^{π_i}(s), which is the utility of each state if π_i were to be executed.
 - Policy improvement: Calculate a new policy π_{i+1} using V^{π_i} .

Terminates when there is no change in the policy.

Policy Iteration

Policy improvement:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} P(s'|s, a) V^{\pi_i}(s').$$

Policy evaluation:

$$V_i(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi_i(s)) V_i(s').$$

CS 486/686: Intro to Artificial Intelligence

Policy Evaluation v.s. Bellman Equations

Policy evaluation:

$$V(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s))V(s').$$

Bellman equations:

$$V(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V(s').$$

Write down both equations for $V(s_{11})$. Assume that $\pi(s_{11}) = \text{down}$.

CS 486/686: Intro to Artificial Intelligence

Performing Policy Evaluation Exactly

Policy evaluation:

$$V(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s))V(s').$$

Solve the system of linear equations exactly using standard linear algebra techniques.

For n states, this will take $O(n^3)$ time.

Performing Policy Evaluation Iteratively

Policy evaluation:

$$V(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s))V(s').$$

Solve the system of linear equations approximately by performing a number of simplified value iteration steps.

By the end of the lecture, you should be able to

- Trace the execution of and implement the value iteration algorithm for solving a Markov Decision Process.
- Trace the execution of and implement the policy iteration algorithm for solving a Markov Decision Process.