Markov Decision Processes

Alice Gao Lecture 18 Readings: RN 17.1. PM 9.5.

Outline

Learning Goals

Introduction to Markov Decision Processes

A Grid World

Policies

The optimal policies of the grid world

Determine the Optimal Policy Given $V^*(s)$

Revisiting the Learning goals

By the end of the lecture, you should be able to

- Describe motivations for modeling a decision problem as a Markov decision process.
- Describe components of a fully-observable Markov decision process.
- Describe reasons for using a discounted reward function.
- Define the policy of a Markov decision process.
- Give examples of how the reward function affects the optimal policy of a Markov decision process.

Introduction to Markov Decision Processes

A Grid World

Policies

The optimal policies of the grid world

Determine the Optimal Policy Given $V^*(s)$

Revisiting the Learning goals

Modeling an Ongoing Decision Process

Finite-stage v.s. ongoing problems

Utility at the end v.s. a sequence of rewards

A Markov Decision Process

Rewards

Total reward

Average reward

Discounted reward

Variations of MDP

A fully-observable MDP

 A partially observable MDP (POMDP) combines a MDP and a hidden Markov model.

Introduction to Markov Decision Processes

A Grid World

Policies

The optimal policies of the grid world

Determine the Optimal Policy Given $V^*(s)$

Revisiting the Learning goals

A 3×4 Grid World Problem

What should the robot do to maximize its rewards?

	1	2	3	4
1	Start			
2		Х		-1
3				+1

- Let s_{ij} be the position in row *i* and column *j*.
- ▶ *s*₁₁ is the initial state.
- There is a wall at s_{22} .
- s_{24} and s_{34} are goal states.

The robot escapes the world at either goal state.

An MDP for the 3×4 Grid World

- There are four actions: up, down, left, and right.
 Every action is possible in every state.
- The transition model P(s'|s, a).
 An action achieves its intended effect with probability 0.8.
 An action leads to a 90-degree left turn with probability 0.1.
 An action leads to a 90-degree right turn with probability 0.1.
 If the robot bumps into a wall, it stays in the same square.
- ▶ The reward function R(s) is the reward of entering state s. R(s₂₄) = -1. R(s₃₄) = 1.
 Otherwise, R(s) = -0.04.

CQ: Understanding the transition model

CQ: The robot is in s_{14} and tries to move to our right, what is the probability that the robot stays in s_{14} ?

- (A) 0.1
- (B) 0.2
- (C) 0.8
- (D) 0.9
- (E) 1.0

Introduction to Markov Decision Processes

A Grid World

Policies

The optimal policies of the grid world

Determine the Optimal Policy Given $V^*(s)$

Revisiting the Learning goals

CQ: A fixed sequence of actions

CQ: If the environment is deterministic, an optimal solution to the grid world problem is the fixed action sequence: down, down, right, right, and right.

- (A) True
- (B) False
- (C) I don't know

CQ: A fixed sequence of actions

CQ: Consider the action sequence "down, down, right, right, and right". This action sequence could take the robot to more than one square with positive probability.

- (A) True
- (B) False
- (C) I don't know

A policy specifies what the agent should do as a function of the current state.

A policy is

- non-stationary if it is a function of the state and the time.
- stationary if it is a function of the state.

Introduction to Markov Decision Processes

A Grid World

Policies

The optimal policies of the grid world

Determine the Optimal Policy Given $V^*(s)$

Revisiting the Learning goals

The optimal policies of the grid world

The optimal policy of the grid world changes based on R(s) for any non-goal state s. It shows a careful balancing of risk and reward.

	1	2	3	4
1	Start			
2		Х		-1
3				+1

The optimal policy when life is ...

When the reward function is

- ▶ R(s) < -1.6284
- ▶ -0.4278 < R(s) < -0.0850
- ► R(s) = -0.04
- ▶ $-0.0221 < R(s) \le 0$

 $\blacktriangleright \ 0 < R(s)$

	1	2	3	4
1	Start			
2		Х		-1
3				+1

The optimal policy when life is quite unpleasant

When -0.4278 < R(s) < -0.0850, what does the optimal policy look like?

	1	2	3	4
1	Start			
2		Х		-1
3				+1

The optimal policy when life is painful

When R(s) < -1.6284, what does the optimal policy look like?

	1	2	3	4
1	Start			
2		Х		-1
3				+1

The optimal policy when life is unpleasant

When R(s) = -0.04,

what does the optimal policy look like?

	1	2	3	4
1	Start			
2		Х		-1
3				+1

The optimal policy when life is only slightly dreary

When $-0.0221 < R(s) \le 0$,

what does the optimal policy look like?

	1	2	3	4
1	Start			
2		Х		-1
3				+1

The optimal policy when life is GOOD = D

When R(s) > 0,

what does the optimal policy look like?

	1	2	3	4
1	Start			
2		Х		-1
3				+1

Introduction to Markov Decision Processes

A Grid World

Policies

The optimal policies of the grid world

Determine the Optimal Policy Given $V^*(s)$

Revisiting the Learning goals

The Expected Utility of a Policy

 $V^{\pi}(s):$ expected utility of entering state s and following the policy π thereafter.

 $V^*(s):$ expected utility of entering state s and following the optimal policy π^* thereafter.

The Values of $V^*(s)$

	1	2	3	4
1	0.705	0.655	0.611	0.388
2	0.762	Х	0.660	-1
3	0.812	0.868	0.918	+1

Figure: $V^*(s)$ for $\gamma = 1$ and $R(s) = -0.04, \forall s \neq s_{24}, s \neq s_{34}.$

27 / 30

Calculate the Optimal Policy Given $V^*(s)$

Calculate my expected utility if I am in state s and take action a.

$$Q^{*}(s,a) = \sum_{s'} P(s'|s,a) V^{*}(s')$$
(1)

In state s, choose an action that maximizes my expected utility.

$$\pi^*(s) = \arg\max_a Q^*(s, a) \tag{2}$$

CQ: Determine optimal action given $V^*(s)$

CQ: What is the optimal action for state s_{13} ? (A) Up (B) Down (C) Left (D) Right

$$Q^*(s,a) = \sum_{s'} P(s'|s,a)V^*(s')$$
$$\pi(s) = \arg\max_a Q^*(s,a).$$

The values of $V^*(s)$ are given below.

	1	2	3	4
1	0.705	0.655	0.611	0.388
2	0.762	Х	0.660	-1
3	0.812	0.868	0.918	+1

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- Describe motivations for modeling a decision problem as a Markov decision process.
- Describe components of a fully-observable Markov decision process.
- Describe reasons for using a discounted reward function.
- Define the policy of a Markov decision process.
- Give examples of how the reward function affects the optimal policy of a Markov decision process.