Inference in Hidden Markov Models Part 2

Alice Gao
Lecture 15
Readings: RN 15.2.3.

Outline

Learning Goals

Smoothing Calculations

Smoothing Derivations

The Forward-Backward Algorithm

Revisiting the Learning goals

Learning Goals

By the end of the lecture, you should be able to

- Calculate the smoothing probability for a time step in a hidden Markov model.
- Describe the justification for a step in the derivation of the smoothing formulas.
- Describe the forward-backward algorithm.

Learning Goals

Smoothing Calculations

Smoothing Derivations

The Forward-Backward Algorithm

Revisiting the Learning goals

The Umbrella Model

$$
P\left(s_{0}\right)=0.5
$$

$$
\begin{array}{|l}
P\left(s_{t} \mid s_{t-1}\right)=0.7 \\
P\left(s_{t} \mid \neg s_{t-1}\right)=0.3
\end{array}
$$

$$
\begin{aligned}
& P\left(o_{t} \mid s_{t}\right)=0.9 \\
& P\left(o_{t} \mid \neg s_{t}\right)=0.2
\end{aligned}
$$

Smoothing

Given the observations from day 0 to day $t-1$, what is the probability that I am in a particular state on day k ?

$$
P\left(S_{k} \mid o_{0:(t-1)}\right), 0 \leq k \leq t-1
$$

Smoothing through Backward Recursion

Calculating the smoothed probability $P\left(S_{k} \mid o_{0:(t-1)}\right)$:

$$
\begin{aligned}
& P\left(S_{k} \mid o_{0:(t-1)}\right) \\
& =\alpha P\left(S_{k} \mid o_{0: k}\right) P\left(o_{(k+1):(t-1)} \mid S_{k}\right) \\
& =\alpha f_{0: k} b_{(k+1):(t-1)}
\end{aligned}
$$

Calculate $f_{0: k}$ through forward recursion.
Calculate $b_{(k+1):(t-1)}$ through backward recursion.
Backward Recursion:
Base case:

$$
b_{t:(t-1)}=\overrightarrow{1}
$$

Recursive case:

$$
b_{(k+1):(t-1)}=\sum_{s_{k+1}} P\left(o_{k+1} \mid s_{k+1}\right) b_{(k+2):(t-1)} P\left(s_{k+1} \mid S_{k}\right)
$$

A Smoothing Example

Consider the umbrella story.

Assume that $O_{0}=t, O_{1}=t$, and $O_{2}=t$.
What is the probability that it rained on day $0\left(P\left(S_{0} \mid o_{0} \wedge o_{1} \wedge o_{2}\right)\right)$ and the probability it rained on day $1\left(P\left(S_{1} \mid o_{0} \wedge o_{1} \wedge o_{2}\right)\right)$?

Here are the useful quantities from the umbrella story.

$$
\begin{aligned}
& P\left(s_{0}\right)=0.5 \\
& P\left(o_{t} \mid s_{t}\right)=0.9, P\left(o_{t} \mid \neg s_{t}\right)=0.2 \\
& P\left(s_{t} \mid s_{(t-1)}\right)=0.7, P\left(s_{t} \mid \neg s_{(t-1)}\right)=0.3
\end{aligned}
$$

A Smoothing Example

Calculate $P\left(S_{1} \mid o_{0: 2}\right)$.

A Smoothing Example

Calculate $P\left(S_{1} \mid o_{0: 2}\right)$.
(1) What are the values of k and t ?

$$
P\left(S_{1} \mid o_{0: 2}\right)=P\left(S_{k} \mid o_{0:(t-1)}\right) \Rightarrow k=1, t=3
$$

(2) Write the probability as a product of two messages.

$$
\begin{aligned}
& P\left(S_{1} \mid o_{0: 2}\right) \\
& =\alpha P\left(S_{1} \mid o_{0: 1}\right) * P\left(o_{2: 2} \mid S_{1}\right) \\
& =\alpha f_{0: 1} * b_{2: 2}
\end{aligned}
$$

(3) We already calculated $f_{0: 1}=\langle 0.883,0.117\rangle$. Next, we will calculate $b_{2: 2}$ using backward recursion.

A Backward Recursion Example - Recursive Case

Calculate $b_{2: 2}=P\left(o_{2: 2} \mid S_{1}\right)$ where $k=1, t=3$.

A Backward Recursion Example - Recursive Case

Calculate $b_{2: 2}=P\left(o_{2: 2} \mid S_{1}\right)$ where $k=1, t=3$.

$$
\begin{aligned}
& b_{2: 2}=P\left(o_{2: 2} \mid S_{1}\right) \\
& =\sum_{s_{2}} P\left(o_{2} \mid s_{2}\right) * b_{3: 2} * P\left(s_{2} \mid S_{1}\right) \\
& =\sum_{s_{2}} P\left(o_{2} \mid s_{2}\right) * P\left(o_{3: 2} \mid s_{2}\right) * P\left(s_{2} \mid S_{1}\right) \\
& =\sum_{s_{2}} P\left(o_{2} \mid s_{2}\right) * P\left(o_{3: 2} \mid s_{2}\right) *\left\langle P\left(s_{2} \mid s_{1}\right), P\left(s_{2} \mid \neg s_{1}\right)\right\rangle \\
& =\left(P\left(o_{2} \mid s_{2}\right) * P\left(o_{3: 2} \mid s_{2}\right) *\left\langle P\left(s_{2} \mid s_{1}\right), P\left(s_{2} \mid \neg s_{1}\right)\right\rangle\right. \\
& \left.\quad \quad+P\left(o_{2} \mid \neg s_{2}\right) * P\left(o_{3: 2} \mid \neg s_{2}\right) *\left\langle P\left(\neg s_{2} \mid s_{1}\right), P\left(\neg s_{2} \mid \neg s_{1}\right)\right\rangle\right)
\end{aligned}
$$

A Backward Recursion Example - Recursive Case

Calculate $b_{2: 2}=P\left(o_{2: 2} \mid S_{1}\right)$ where $k=1, t=3$.

A Backward Recursion Example - Recursive Case

Calculate $b_{2: 2}=P\left(o_{2: 2} \mid S_{1}\right)$ where $k=1, t=3$.

$$
\begin{aligned}
& b_{2: 2}=P\left(o_{2: 2} \mid S_{1}\right) \\
& =\left(P\left(o_{2} \mid s_{2}\right) * P\left(o_{3: 2} \mid s_{2}\right) *\left\langle P\left(s_{2} \mid s_{1}\right), P\left(s_{2} \mid \neg s_{1}\right)\right\rangle\right. \\
& \\
& \left.\quad \quad+P\left(o_{2} \mid \neg s_{2}\right) * P\left(o_{3: 2} \mid \neg s_{2}\right) *\left\langle P\left(\neg s_{2} \mid s_{1}\right), P\left(\neg s_{2} \mid \neg s_{1}\right)\right\rangle\right) \\
& =(0.9 * 1 *\langle 0.7,0.3\rangle+0.2 * 1 *\langle 0.3,0.7\rangle) \\
& =(0.9 *\langle 0.7,0.3\rangle+0.2 *\langle 0.3,0.7\rangle) \\
& = \\
& =(\langle 0.63,0.27\rangle+\langle 0.06,0.14\rangle) \\
& = \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

A Smoothing Example

Calculate $P\left(S_{1} \mid o_{0: 2}\right)$.

A Smoothing Example

Calculate $P\left(S_{1} \mid o_{0: 2}\right)$.

$$
\begin{aligned}
& P\left(S_{1} \mid o_{0: 2}\right) \\
& =\alpha P\left(S_{1} \mid o_{0: 1}\right) * P\left(o_{2: 2} \mid S_{1}\right) \\
& =\alpha f_{0: 1} * b_{2: 2} \\
& =\alpha\langle 0.883,0.117\rangle *\langle 0.69,0.41\rangle \\
& =\alpha\langle 0.6093,0.0480\rangle \\
& =\langle 0.927,0.073\rangle
\end{aligned}
$$

A Smoothing Example

Calculate $P\left(S_{0} \mid o_{0: 2}\right)$.

A Smoothing Example

Calculate $P\left(S_{0} \mid o_{0: 2}\right)$.

$$
\left.+P\left(o_{1} \mid \neg s_{1}\right) * P\left(o_{2: 2} \mid \neg s_{1}\right) *\left\langle P\left(\neg s_{1} \mid s_{0}\right), P\left(\neg s_{1} \mid \neg s_{0}\right)\right\rangle\right)
$$

$$
\begin{aligned}
& k=0, t=3 \\
& b_{1: 2}=P\left(o_{1: 2} \mid S_{0}\right) \\
& =\langle 0.4593,0.2437\rangle \\
& P\left(S_{0} \mid o_{0: 2}\right) \\
& =\alpha f_{0: 0} * b_{1: 2} \\
& =\alpha\langle 0.818,0.182\rangle *\langle 0.4593,0.2437\rangle \\
& =\langle 0.894,0.106\rangle
\end{aligned}
$$

Learning Goals

Smoothing Calculations

Smoothing Derivations

The Forward-Backward Algorithm

Revisiting the Learning goals

Smoothing (day k)

How can we derive the formula for $P\left(S_{k} \mid o_{0:(t-1)}\right), 0 \leq k<t-1$?

$$
\begin{aligned}
& P\left(S_{k} \mid o_{0:(t-1)}\right) \\
& =P\left(S_{k} \mid o_{(k+1):(t-1)} \wedge o_{0: k}\right) \\
& =\alpha P\left(S_{k} \mid o_{0: k}\right) P\left(o_{(k+1):(t-1)} \mid S_{k} \wedge o_{0: k}\right) \\
& =\alpha P\left(S_{k} \mid o_{0: k}\right) P\left(o_{(k+1):(t-1)} \mid S_{k}\right) \\
& =\alpha f_{0: k} b_{(k+1):(t-1)}
\end{aligned}
$$

Smoothing Derivation 1/3

What is the justification for the step below?

$$
\begin{aligned}
& P\left(S_{k} \mid o_{0:(t-1)}\right) \\
& =P\left(S_{k} \mid o_{(k+1):(t-1)} \wedge o_{0: k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Smoothing Derivation 2/3

What is the justification for the step below?

$$
\begin{aligned}
& =P\left(S_{k} \mid o_{(k+1):(t-1)} \wedge o_{0: k}\right) \\
& =\alpha P\left(S_{k} \mid o_{0: k}\right) P\left(o_{(k+1):(t-1)} \mid S_{k} \wedge o_{0: k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Smoothing Derivation 3/3

What is the justification for the step below?

$$
\begin{aligned}
& =\alpha P\left(S_{k} \mid o_{0: k}\right) P\left(o_{(k+1):(t-1)} \mid S_{k} \wedge o_{0: k}\right) \\
& =\alpha P\left(S_{k} \mid o_{0: k}\right) P\left(o_{(k+1):(t-1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Backward Recursion Formula Derivations

How did we derive the formula for backward recursion?

$$
\begin{align*}
& P\left(o_{(k+1):(t-1)} \mid S_{k}\right) \\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \wedge s_{(k+1)} \mid S_{k}\right) \tag{1}\\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \mid s_{(k+1)} \wedge S_{k}\right) * P\left(s_{(k+1)} \mid S_{k}\right) \tag{2}\\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right) \tag{3}\\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1)} \wedge o_{(k+2):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right) \tag{4}\\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1)} \mid s_{(k+1)}\right) * P\left(o_{(k+2):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right) \tag{5}
\end{align*}
$$

Backward Recursion Derivation 1/5

What is the justification for the step below?

$$
\begin{aligned}
& P\left(o_{(k+1):(t-1)} \mid S_{k}\right) \\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \wedge s_{(k+1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Backward Recursion Derivation 2/5

What is the justification for the step below?

$$
\begin{aligned}
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \wedge s_{(k+1)} \mid S_{k}\right) \\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \mid s_{(k+1)} \wedge S_{k}\right) P\left(s_{(k+1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Backward Recursion Derivation 3/5

What is the justification for the step below?

$$
\begin{aligned}
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \mid s_{(k+1)} \wedge S_{k}\right) P\left(s_{(k+1)} \mid S_{k}\right) \\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \mid s_{(k+1)}\right) P\left(s_{(k+1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Backward Recursion Derivation 4/5

What is the justification for the step below?

$$
\begin{aligned}
& =\sum_{s_{(k+1)}} P\left(o_{(k+1):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right) \\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1)} \wedge o_{(k+2):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Backward Recursion Derivation 5/5

What is the justification for the step below?

$$
\begin{aligned}
& =\sum_{s_{(k+1)}} P\left(o_{(k+1)} \wedge o_{(k+2):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right) \\
& =\sum_{s_{(k+1)}} P\left(o_{(k+1)} \mid s_{(k+1)}\right) * P\left(o_{(k+2):(t-1)} \mid s_{(k+1)}\right) * P\left(s_{(k+1)} \mid S_{k}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Learning Goals

Smoothing Calculations

Smoothing Derivations

The Forward-Backward Algorithm

Revisiting the Learning goals

The Forward-Backward Algorithm

Consider a hidden Markov model with 4 time steps. We can calculate the smoothed probabilities using one forward pass and one backward pass through the network.

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- Calculate the smoothing probability for a time step in a hidden Markov model.
- Describe the justification for a step in the derivation of the smoothing formulas.
- Describe the forward-backward algorithm.

