Inference in Hidden Markov Models Part 1

Alice Gao
Lecture 14
Readings: RN 15.1, 15.2.1, 15.2.2. PM 8.5.1-8.5.3.

Outline

Learning Goals

A Model for the Umbrella Story

Inference in Hidden Markov Models

Filtering Calculations

Filtering Derivations

Revisiting the Learning goals

Learning Goals

By the end of the lecture, you should be able to

- Construct a hidden Markov model given a real-world scenario.
- Explain the independence assumptions in a hidden Markov model.
- Calculating the filtering probability for a time step in a hidden Markov model.
- Describe the justification for a step in the derivation of the filtering formulas.

Learning Goals

A Model for the Umbrella Story

Inference in Hidden Markov Models

Filtering Calculations

Filtering Derivations

Revisiting the Learning goals

Inference in a Changing World

So far, we can reason probabilistically in a static world.
However, the world evolves over time.

In an evolving world, we have to reason about a sequence of events.

Applications of sequential belief networks:

- weather predictions
- stock market predictions
- patient monitoring
- robot localization
- speech and handwriting recognition

The Umbrella Story

You are a security guard stationed at a secret underground installation.

You want to know whether it's raining today.
Unfortunately, your only access to the outside world occurs each morning when you see the director coming in with, or without, an umbrella.

States and Observations

- The world contains a series of time slices.
- Each time slice contains a set of random variables, Let S_{t} denote the un-observable state at time t. Let O_{t} denote the signal/observation at time t.

What are the random variables in the umbrella world?

Transition Model

How does the current state depend on the previous states?
In general, every state may depend on all the previous states.

$$
P\left(S_{t} \mid S_{t-1} \wedge S_{t-2} \wedge S_{t-3} \wedge \cdots \wedge S_{0}\right)
$$

Problem: As t increases, the conditional probability distribution can be unboundedly large.

Solution: Let the current state depend on a fixed number of previous states.

K-order Markov Chain

First-order Markov process:

The transition model:

$$
P\left(S_{t} \mid S_{t-1} \wedge S_{t-2} \wedge S_{t-3} \wedge \cdots \wedge S_{0}\right)=P\left(S_{t} \mid S_{t-1}\right)
$$

Second-order Markov process:

The transition model:

$$
P\left(S_{t} \mid S_{t-1} \wedge S_{t-2} \wedge S_{t-3} \wedge \cdots \wedge S_{0}\right)=P\left(S_{t} \mid S_{t-1} \wedge S_{t-2}\right)
$$

Transition model for the umbrella story

The Markov assumption:
The future is independent of the past given the present.

The transition model:

$$
P\left(S_{t} \mid S_{t-1} \wedge S_{t-2} \wedge S_{t-3} \wedge \cdots \wedge S_{0}\right)=P\left(S_{t} \mid S_{t-1}\right)
$$

Stationary Process

Is there a different conditional probability distribution for each time step?

Stationary process:

- The dynamics does not change over time.
- The conditional probability distribution for each time step remains the same.

What are the advantages of using a stationary model?

Transition model for the umbrella story

$$
P\left(s_{0}\right)=0.5
$$

$$
\begin{aligned}
& P\left(s_{t} \mid s_{t-1}\right)=0.7 \\
& P\left(s_{t} \mid \neg s_{t-1}\right)=0.3
\end{aligned}
$$

Sensor model

How does the evidence variable O_{t} at time t depend on the previous and current states?
(Sensor) Markov assumption:
Each state is sufficient to generate its observation.

$$
P\left(O_{t} \mid S_{t} \wedge S_{t-1} \wedge \cdots \wedge S_{0} \wedge O_{t-1} \wedge O_{t-2} \wedge \cdots \wedge O_{0}\right)=P\left(O_{t} \mid S_{t}\right)
$$

Complete model for the umbrella story

$$
P\left(s_{0}\right)=0.5
$$

$$
\begin{aligned}
& P\left(s_{t} \mid s_{t-1}\right)=0.7 \\
& P\left(s_{t} \mid \neg s_{t-1}\right)=0.3
\end{aligned}
$$

$$
\begin{aligned}
& P\left(o_{t} \mid s_{t}\right)=0.9 \\
& P\left(o_{t} \mid \neg s_{t}\right)=0.2
\end{aligned}
$$

Learning Goals

A Model for the Umbrella Story

Inference in Hidden Markov Models

Filtering Calculations

Filtering Derivations

Revisiting the Learning goals

Hidden Markov Model

- A Markov process
- The state variables are un-observable.
- The evidence variables, which depend on the states, are observable.

Common Inference Tasks

- Filtering: Which state am I in right now?
- Prediction: Which state will I be in tomorrow?
- Smoothing: Which state was I in yesterday?
- Most likely explanation: Which sequence of states is most likely to have generated the observations?

Algorithms for the inference tasks

A HMM is a Bayesian network.
We can perform inference using the variable elimination algorithm!
More specialized algorithms:

- The forward-backward algorithm: filtering and smoothing
- The Viterbi algorithm: most likely explanation

Learning Goals

A Model for the Umbrella Story

Inference in Hidden Markov Models

Filtering Calculations

Filtering Derivations

Revisiting the Learning goals

Filtering

Given the observations from day 0 to day k, what is the probability that I am in a particular state on day k ?

$$
P\left(S_{k} \mid o_{0: k}\right)
$$

Filtering through Forward Recursion

Let $f_{0: k}=P\left(S_{k} \mid o_{0: k}\right)$.
Base case:

$$
f_{0: 0}=\alpha P\left(o_{0} \mid S_{0}\right) P\left(S_{0}\right)
$$

Recursive case:

$$
f_{0: k}=\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \mid s_{k-1}\right) f_{0:(k-1)}
$$

The Umbrella Story

$$
P\left(s_{0}\right)=0.5
$$

$$
\begin{aligned}
& P\left(s_{t} \mid s_{t-1}\right)=0.7 \\
& P\left(s_{t} \mid \neg s_{t-1}\right)=0.3
\end{aligned}
$$

$$
\begin{aligned}
& P\left(o_{t} \mid s_{t}\right)=0.9 \\
& P\left(o_{t} \mid \neg s_{t}\right)=0.2
\end{aligned}
$$

A Filtering Example

Consider the umbrella story.
Assume that $O_{0}=t$ and $O_{1}=t$.
Let's calculate $f_{0: 0}$ and $f_{0: 1}$ using forward recursion.
Here are the useful quantities from the umbrella story.

$$
\begin{aligned}
& P\left(s_{0}\right)=0.5 \\
& P\left(o_{t} \mid s_{t}\right)=0.9, P\left(o_{t} \mid \neg s_{t}\right)=0.2 \\
& P\left(s_{t} \mid s_{(t-1)}\right)=0.7, P\left(s_{t} \mid \neg s_{(t-1)}\right)=0.3
\end{aligned}
$$

A Filtering Example - Base Case of Forward Recursion

Calculate $f_{0: 0}=P\left(S_{0} \mid o_{0}\right)$.

A Filtering Example - Base Case of Forward Recursion

Calculate $f_{0: 0}=P\left(S_{0} \mid o_{0}\right)$.

$$
\begin{aligned}
& P\left(s_{0} \mid o_{0}\right)=\alpha P\left(o_{0} \mid s_{0}\right) P\left(s_{0}\right)=\alpha 0.9 * 0.5=\alpha 0.45 \\
& P\left(\neg s_{0} \mid o_{0}\right)=\alpha P\left(o_{0} \mid \neg s_{0}\right) P\left(\neg s_{0}\right)=\alpha 0.2 * 0.5=\alpha 0.1 \\
& P\left(s_{0} \mid o_{0}\right)=0.45 /(0.45+0.1)=0.818 \\
& P\left(\neg s_{0} \mid o_{0}\right)=1-0.818=0.182
\end{aligned}
$$

$$
\begin{aligned}
& P\left(S_{0} \mid o_{0}\right)=\alpha P\left(o_{0} \mid S_{0}\right) P\left(S_{0}\right) \\
& =\alpha\langle 0.9,0.2\rangle *\langle 0.5,0.5\rangle \\
& =\alpha\langle 0.45,0.1\rangle \\
& =\langle 0.818,0.182\rangle
\end{aligned}
$$

A Filtering Example - Recursive Case of Forward Recursion

Calculate $f_{0: 1}=\alpha P\left(o_{1} \mid S_{1}\right) \sum_{s_{0}} P\left(S_{1} \mid s_{0}\right) f_{0: 0}$
where $f_{0: 0}=\langle 0.818,0.182\rangle$.

A Filtering Example - Recursive Case of Forward Recursion

Calculate $f_{0: 1}=\alpha P\left(o_{1} \mid S_{1}\right) \sum_{s_{0}} P\left(S_{1} \mid s_{0}\right) f_{0: 0}$ where $f_{0: 0}=\langle 0.818,0.182\rangle$.

First, let's expand the formula.

$$
\begin{aligned}
& P\left(S_{1} \mid o_{0: 1}\right) \\
& =\alpha P\left(o_{1} \mid S_{1}\right) \sum_{s_{0}} P\left(S_{1} \mid s_{0}\right) P\left(s_{0} \mid o_{0}\right) \\
& =\alpha P\left(o_{1} \mid S_{1}\right) *\left(P\left(S_{1} \mid s_{0}\right) * P\left(s_{0} \mid o_{0}\right)+P\left(S_{1} \mid \neg s_{0}\right) * P\left(\neg s_{0} \mid o_{0}\right)\right) \\
& =\alpha\left\langle P\left(o_{1} \mid s_{1}\right), P\left(o_{1} \mid \neg s_{1}\right)\right\rangle \\
& \quad *\left(\left\langle P\left(s_{1} \mid s_{0}\right), P\left(\neg s_{1} \mid s_{0}\right)\right\rangle * P\left(s_{0} \mid o_{0}\right)\right. \\
& \quad+\left\langle\left\langle P\left(s_{1} \mid \neg s_{0}\right), P\left(\neg s_{1} \mid \neg s_{0}\right)\right\rangle * P\left(\neg s_{0} \mid o_{0}\right)\right)
\end{aligned}
$$

A Filtering Example - Recursive Case of Forward Recursion

Calculate $f_{0: 1}=\alpha P\left(o_{1} \mid S_{1}\right) \sum_{s_{0}} P\left(S_{1} \mid s_{0}\right) f_{0: 0}$ where $f_{0: 0}=\langle 0.818,0.182\rangle$.

$$
\begin{aligned}
& P\left(S_{1} \mid o_{0: 1}\right)=\alpha\left\langle P\left(o_{1} \mid s_{1}\right), P\left(o_{1} \mid \neg s_{1}\right)\right\rangle \\
& \quad \quad \quad\left(\left\langle P\left(s_{1} \mid s_{0}\right), P\left(\neg s_{1} \mid s_{0}\right)\right\rangle * P\left(s_{0} \mid o_{0}\right)\right. \\
& \left.\quad \quad+\left\langle P\left(s_{1} \mid \neg s_{0}\right), P\left(\neg s_{1} \mid \neg s_{0}\right)\right\rangle * P\left(\neg s_{0} \mid o_{0}\right)\right) \\
& =\alpha\langle 0.9,0.2\rangle(\langle 0.7,0.3\rangle * 0.818+\langle 0.3,0.7\rangle * 0.182) \\
& =\alpha\langle 0.9,0.2\rangle(\langle 0.5726,0.2454\rangle+\langle 0.0546,0.1274\rangle) \\
& =\alpha\langle 0.9,0.2\rangle *\langle 0.6272,0.3728\rangle \\
& =\alpha\langle 0.56448,0.07456\rangle \\
& =\langle 0.883,0.117\rangle
\end{aligned}
$$

Learning Goals

A Model for the Umbrella Story

Inference in Hidden Markov Models

Filtering Calculations

Filtering Derivations

Revisiting the Learning goals

Filtering (day k)

How did we derive the formula for $P\left(S_{k} \mid o_{0: k}\right)$?

$$
\begin{align*}
& P\left(S_{k} \mid o_{0: k}\right) \\
& =P\left(S_{k} \mid o_{k} \wedge o_{0:(k-1)}\right) \tag{1}\\
& =\alpha P\left(o_{k} \mid S_{k} \wedge o_{0:(k-1)}\right) P\left(S_{k} \mid o_{0:(k-1)}\right) \tag{2}\\
& =\alpha P\left(o_{k} \mid S_{k}\right) P\left(S_{k} \mid o_{0:(k-1)}\right) \tag{3}\\
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \wedge s_{k-1} \mid o_{0:(k-1)}\right) \tag{4}\\
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \mid s_{k-1} \wedge o_{0:(k-1)}\right) P\left(s_{k-1} \mid o_{0:(k-1)}\right) \tag{5}\\
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \mid s_{k-1}\right) P\left(s_{k-1} \mid o_{0:(k-1)}\right) \tag{6}
\end{align*}
$$

Filtering (day k) $1 / 6$

What is the justification for the step below?

$$
\begin{aligned}
& P\left(S_{k} \mid o_{0: k}\right) \\
& =P\left(S_{k} \mid o_{k} \wedge o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Filtering (day k) 2/6

What is the justification for the step below?

$$
\begin{aligned}
& =P\left(S_{k} \mid o_{k} \wedge o_{0:(k-1)}\right) \\
& =\alpha P\left(o_{k} \mid S_{k} \wedge o_{0:(k-1)}\right) P\left(S_{k} \mid o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Filtering (day k) 3/6

What is the justification for the step below?

$$
\begin{aligned}
& =\alpha P\left(o_{k} \mid S_{k} \wedge o_{0:(k-1)}\right) P\left(S_{k} \mid o_{0:(k-1)}\right) \\
& =\alpha P\left(o_{k} \mid S_{k}\right) P\left(S_{k} \mid o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Filtering (day k) 4/6

What is the justification for the step below?

$$
\begin{aligned}
& =\alpha P\left(o_{k} \mid S_{k}\right) P\left(S_{k} \mid o_{0:(k-1)}\right) \\
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \wedge s_{k-1} \mid o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Filtering (day k) 5/6

What is the justification for the step below?

$$
\begin{aligned}
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \wedge s_{k-1} \mid o_{0:(k-1)}\right) \\
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \mid s_{k-1} \wedge o_{0:(k-1)}\right) P\left(s_{k-1} \mid o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Filtering (day k) 6/6

What is the justification for the step below?

$$
\begin{aligned}
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \mid s_{k-1} \wedge o_{0:(k-1)}\right) P\left(s_{k-1} \mid o_{0:(k-1)}\right) \\
& =\alpha P\left(o_{k} \mid S_{k}\right) \sum_{s_{k-1}} P\left(S_{k} \mid s_{k-1}\right) P\left(s_{k-1} \mid o_{0:(k-1)}\right)
\end{aligned}
$$

(A) Bayes' rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- Construct a hidden Markov model given a real-world scenario.
- Explain the independence assumptions in a hidden Markov model.
- Calculating the filtering probability for a time step in a hidden Markov model.
- Describe the justification for a step in the derivation of the filtering formulas.

