Inferences in Bayesian Networks Variable Elimination Algorithm

Alice Gao
Lecture 13
Readings: RN 14.4. PM 8.4.

Outline

Learning Goals

Why Use the Variable Elimination Algorithm

The Variable Elimination Algorithm

Revisiting the Learning goals

Learning Goals

By the end of the lecture, you should be able to

- Explain how we can perform probabilistic inference more efficiently using the variable elimination algorithm.
- Define factors. Manipulate factors using operations restrict, sum out, multiply and normalize.
- Describe/trace/implement the variable elimination algorithm for calculating a prior or a posterior probability given a Bayesian network.
- Explain how the elimination ordering affects the complexity of the variable elimination algorithm.
- Identify the variables that are irrelevant to a query.

Learning Goals

Why Use the Variable Elimination Algorithm

The Variable Elimination Algorithm

Revisiting the Learning goals

A Bayesian Network for the Holmes Scenario

Answering a Question

What is the probability that a burglary is happening given that Dr. Watson and Mrs. Gibbon both call?

$$
P(B \mid w \wedge g)
$$

- Query variables: B
- Evidence variables: W and G
- Hidden variables: E, A, and R.

Answering the query using the joint distribution

$$
P(B \mid w \wedge g)=
$$

Number of operations using the joint distribution

How many addition and multiplication operations do we need to calculate the expression below?

$$
\sum_{e} \sum_{a} \sum_{r} P(B) P(e) P(a \mid B \wedge e) P(w \mid a) P(g \mid a) P(r \mid e)
$$

(A) ≤ 10
(B) $11-20$
(C) $21-40$
(D) 41-60
(E) ≥ 61

Answering the query using variable elimination algorithm

$\sum_{e} \sum_{a} \sum_{r} P(B) P(e) P(a \mid B \wedge e) P(w \mid a) P(g \mid a) P(r \mid e)$

Number of operations via the variable elimination algorithm

How many addition and multiplication operations do we need to calculate the expression below?

$$
P(B) \sum_{e} P(e) \sum_{a} P(a \mid B \wedge e) P(w \mid a) P(g \mid a)
$$

(A) ≤ 10
(B) 11-20
(C) $21-40$
(D) 41-60
(E) ≥ 61

Why Use the Variable Elimination Algorithm

The Variable Elimination Algorithm

Revisiting the Learning goals

Introducing the Variable Elimination Algorithm

- Performing probabilistic inference is challenging.
- Exact and approximate inferences.
- The variable elimination algorithm uses dynamic programming and exploits the conditional independence.

Factors

- A function from some random variables to a number.
- $f\left(X_{1}, \ldots, X_{j}\right)$: a factor f on variables X_{1}, \ldots, X_{j}.
- A factor can represent a joint or a conditional distribution. For example, $f\left(X_{1}, X_{2}\right)$ can represent $P\left(X_{1} \wedge X_{2}\right), P\left(X_{1} \mid X_{2}\right)$ or $P\left(X_{1} \wedge X_{3}=v_{3} \mid X_{2}\right)$.
- Define a factor for every conditional probability distribution in the Bayes net.

Restrict a factor

Restrict a factor.

- Assign each evidence variable to its observed value.
- Restricting $f\left(X_{1}, X_{2}, \ldots, X_{j}\right)$ to $X_{1}=v_{1}$, produces a new factor $f\left(X_{1}=v_{1}, X_{2}, \ldots, X_{j}\right)$ on X_{2}, \ldots, X_{j}.
- $f\left(X_{1}=v_{1}, X_{2}=v_{2}, \ldots, X_{j}=v_{j}\right)$ is a number.

Restrict a factor

$f_{1}(X, Y, Z): |$| X | Y | Z | val |
| :--- | :--- | :--- | :--- |
| t | t | t | 0.1 |
| t | t | f | 0.9 |
| t | f | t | 0.2 |
| t | f | f | 0.8 |
| f | t | t | 0.4 |
| f | t | f | 0.6 |
| f | f | t | 0.3 |
| f | f | f | 0.7 |

- What is $f_{2}(Y, Z)=f_{1}(x, Y, Z)$?
- What is $f_{3}(Y)=f_{2}(Y, \neg z)$?
- What is $f_{4}()=f_{3}(\neg y)$?

Sum out a variable

Sum out a variable.
Summing out X_{1} with domain $\left\{v_{1}, \ldots, v_{k}\right\}$ from factor $f\left(X_{1}, \ldots, X_{j}\right)$, produces a factor on X_{2}, \ldots, X_{j} defined by:
$\left(\sum_{X_{1}} f\right)\left(X_{2}, \ldots, X_{j}\right)=f\left(X_{1}=v_{1}, \ldots, X_{j}\right)+\cdots+f\left(X_{1}=v_{k}, \ldots, X_{j}\right)$

Sum out a variable

$f_{1}(X, Y, Z):$

X	Y	Z	val
t	t	t	0.03
t	t	f	0.07
t	f	t	0.54
t	f	f	0.36
f	t	t	0.06
f	t	f	0.14
f	f	t	0.48
f	f	f	0.32

What is $f_{2}(X, Z)=\sum_{Y} f_{1}(X, Y, Z)$?

Multiplying factors

Multiply two factors together.
The product of factors $f_{1}(X, Y)$ and $f_{2}(Y, Z)$, where Y are the variables in common, is the factor $\left(f_{1} \times f_{2}\right)(X, Y, Z)$ defined by:

$$
\left(f_{1} \times f_{2}\right)(X, Y, Z)=f_{1}(X, Y) * f_{2}(Y, Z)
$$

Multiplying factors

$f_{1}:$| X | Y | val |
| :---: | :---: | :---: |
| t | t | 0.1 |
| t | f | 0.9 |
| f | t | 0.2 |
| f | f | 0.8 |

$f_{2}:$| Y | Z | val |
| :---: | :---: | :---: |
| t | t | 0.3 |
| t | f | 0.7 |
| f | t | 0.6 |
| f | f | 0.4 |

What is $f_{1}(X, Y) \times f_{2}(Y, Z)$?

Normalize a factor

- Convert it to a probability distribution.
- Divide each value by the sum of all the values.

$f_{1}:$| Y | val |
| :---: | :---: |
| t | 0.2 |
| f | 0.6 |

Variable elimination algorithm

To compute $P\left(X_{q} \mid X_{o_{1}}=v_{1} \wedge \ldots \wedge X_{o_{j}}=v_{j}\right)$:

- Construct a factor for each conditional probability distribution.
- Restrict the observed variables to their observed values.
- Eliminate each hidden variable $X_{h_{j}}$.
- Multiply all the factors that contain $X_{h_{j}}$ to get new factor g_{j}.
- Sum out the variable $X_{h_{j}}$ from the factor g_{j}.
- Multiply the remaining factors.
- Normalize the resulting factor.

Example of VEA

Given a portion of the Holmes network below, calculate $P(B \mid \neg A)$ using the variable elimination algorithm.

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- Explain how we can perform probabilistic inference more efficiently using the variable elimination algorithm.
- Define factors. Manipulate factors using operations restrict, sum out, multiply and normalize.
- Describe/trace/implement the variable elimination algorithm for calculating a prior or a posterior probability given a Bayesian network.
- Explain how the elimination ordering affects the complexity of the variable elimination algorithm.
- Identify the variables that are irrelevant to a query.

