Constraint Satisfaction Problems

Alice Gao Lecture 4 Readings: RN 6.1 - 6.3. PM 4.1 - 4.4.

CS 486/686: Intro to Artificial Intelligence

Alice Gao 1 / 41

Outline

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP Backtracking Search The Arc Consistency Definition The AC-3 Arc Consistency Algorithm Combining Backtracking and Arc Consistency

Revisiting the Learning goals

Learning Goals

By the end of the lecture, you should be able to

- Formulate a real-world problem as a constraint satisfaction problem.
- Trace the execution of the backtracking search algorithm.
- Verify whether a constraint is arc-consistent.
- ► Trace the execution of the AC-3 arc consistency algorithm.
- Trace the execution of the backtracking search algorithm with arc consistency.
- Trace the execution of the backtracking search algorithm with arc consistency and with heuristics for choosing variables and values.

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP

Revisiting the Learning goals

CS 486/686: Intro to Artificial Intelligence

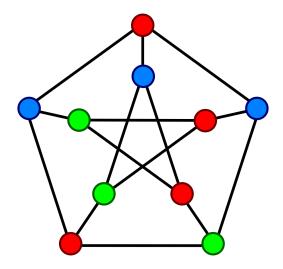
Alice Gao 4 / 41

Evacuation Planning

Instruct residents to follow a route at a given time.

Two challenges:

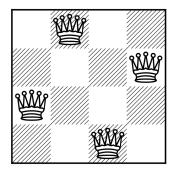
(1) deploy enough resources to give instructions.


- (2) ensure that the population comply with the instructions.
- Applied in a real-life case study and generated schedules close to the optimal ones from prior work.

Even, C., Schutt, A., & Van Hentenryck, P. (2015).
A constraint programming approach for non-preemptive evacuation scheduling.
https://arxiv.org/pdf/1505.02487.pdf.

Crossword Puzzles

Graph Coloring Problem



Sudoku

5 6	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1
7				2				6
	6					2	8	
			4	1	9			5 9
				8			7	9

CS 486/686: Intro to Artificial Intelligence

4-Queens Problem

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP

Revisiting the Learning goals

CS 486/686: Intro to Artificial Intelligence

Alice Gao 10 / 41

Internal Structure of States

 Search algorithms are unaware of the internal structure of states.

However, knowing a state's internal structure can help.

Each state contains

- A set X of variables: $\{X_1, X_2, ..., X_n\}$.
- A set D of domains: D_i is the domain for variable X_i , $\forall i$.
- ► A set *C* of constraints specifying allowable value combinations.

A solution is an assignment of values to all the variables that satisfy all the constraints.

CS 486/686: Intro to Artificial Intelligence

Variables: x₀, x₁, x₂, x₃ where x_i is the row position of the queen in column i, where i ∈ {0, 1, 2, 3}.
Assume that exactly one queen is in each column.

Variables: x₀, x₁, x₂, x₃ where x_i is the row position of the queen in column i, where i ∈ {0, 1, 2, 3}.
Assume that exactly one queen is in each column.

• Domains:
$$D_{x_i} = \{0, 1, 2, 3\}$$
 for all x_i .

Variables: x₀, x₁, x₂, x₃ where x_i is the row position of the queen in column i, where i ∈ {0, 1, 2, 3}.
Assume that exactly one queen is in each column.

• Domains: $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i .

Constraints:

No pair of queens are in the same row or diagonal. $(\forall i (\forall j((i \neq j) \rightarrow ((x_i \neq x_j) \land (|x_i - x_j| \neq |i - j|)))))$ For example, $((x_0 \neq x_1) \land (|x_0 - x_1| \neq 1))$ Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP Backtracking Search

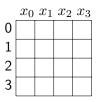
The Arc Consistency Definition The AC-3 Arc Consistency Algorithm Combining Backtracking and Arc Consistency

Revisiting the Learning goals

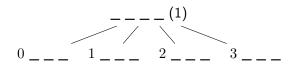
CS 486/686: Intro to Artificial Intelligence

- State: one queen per column in the leftmost k columns with no pair of queens attacking each other.
 - ► Variables: x₀, x₁, x₂, x₃ where x_i is the row position of the queen in column i, where i ∈ {0, 1, 2, 3, _}. Exactly one queen is in each column. x_i = _ denotes that column i does not have a queen.
 - Domains: $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i .
 - Constraints: No pair of queens are in the same row or diagonal.

- State: one queen per column in the leftmost k columns with no pair of queens attacking each other.
 - Variables: x₀, x₁, x₂, x₃ where x_i is the row position of the queen in column i, where i ∈ {0, 1, 2, 3, _}. Exactly one queen is in each column. x_i = _ denotes that column i does not have a queen.
 - Domains: $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i .
 - Constraints: No pair of queens are in the same row or diagonal.
- Initial state: the empty board, that is, _ _ _ _.

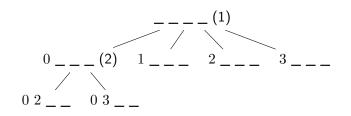

- State: one queen per column in the leftmost k columns with no pair of queens attacking each other.
 - ► Variables: x₀, x₁, x₂, x₃ where x_i is the row position of the queen in column i, where i ∈ {0, 1, 2, 3, _}. Exactly one queen is in each column. x_i = _ denotes that column i does not have a queen.
 - Domains: $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i .
 - Constraints: No pair of queens are in the same row or diagonal.
- Initial state: the empty board, that is, _ _ _ _.
- Goal state: 4 queens on the board. No pair of queens are attacking each other. For example, 2 3 0 1 is a goal state.

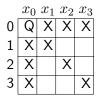
- State: one queen per column in the leftmost k columns with no pair of queens attacking each other.
 - Variables: x₀, x₁, x₂, x₃ where x_i is the row position of the queen in column i, where i ∈ {0, 1, 2, 3, _}. Exactly one queen is in each column. x_i = _ denotes that column i does not have a queen.
 - Domains: $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i .
 - Constraints: No pair of queens are in the same row or diagonal.
- Initial state: the empty board, that is, _ _ _ _.
- Goal state: 4 queens on the board. No pair of queens are attacking each other. For example, 2 3 0 1 is a goal state.
- Successor function: add a queen to the leftmost empty column such that it is not attacked by any other existing queen. For example, 0 _ _ has two successors 0 2 _ and 0 3 _ _.

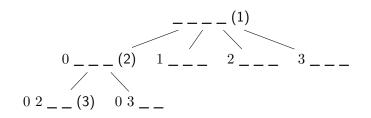

4-Queens Complete Incremental CSP Formulation

- State: one queen per column in the leftmost k columns with no pair of queens attacking each other.
 - ► Variables: x₀, x₁, x₂, x₃ where x_i is the row position of the queen in column i, where i ∈ {0, 1, 2, 3, _}. Exactly one queen is in each column. x_i = _ denotes that column i does not have a queen.
 - Domains: $D_{x_i} = \{0, 1, 2, 3\}$ for all x_i .
 - Constraints: No pair of queens are in the same row or diagonal.
- Initial state: the empty board.
- Goal state: 4 queens on the board. No pair of queens are attacking each other.
- Successor function: add a queen to the leftmost empty column such that it is not attacked by any other existing queen.

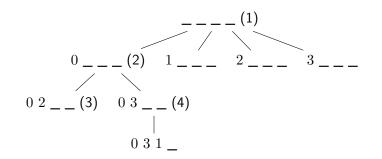
Step 0:

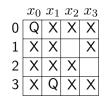



Step 1:

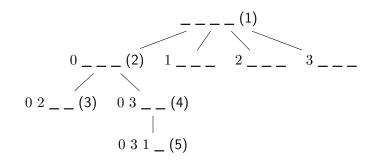


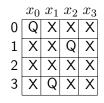
Step 2:





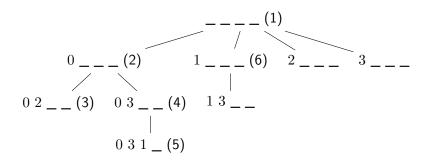
Step 3:

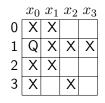

Step 4:



Alice Gao

Step 5:

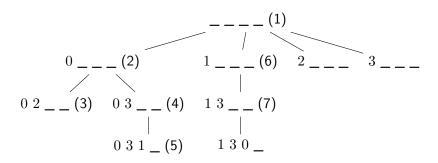


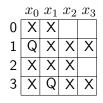


CS 486/686: Intro to Artificial Intelligence

Alice Gao

Step 6:

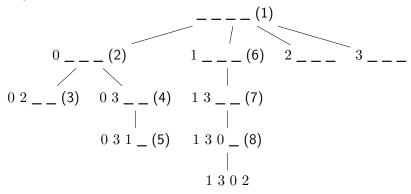




CS 486/686: Intro to Artificial Intelligence

Alice Gao

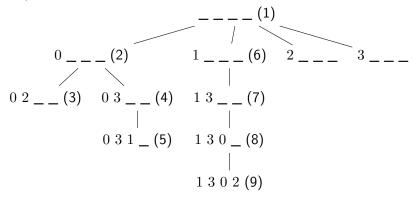
Step 7:

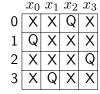


CS 486/686: Intro to Artificial Intelligence

Alice Gao

Step 8:





CS 486/686: Intro to Artificial Intelligence

Alice Gao

Step 9:

CS 486/686: Intro to Artificial Intelligence

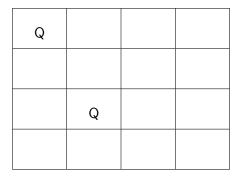
Alice Gao

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP Backtracking Search The Arc Consistency Definition The AC-3 Arc Consistency Algorithm Combining Backtracking and Arc Consistency


Revisiting the Learning goals

CS 486/686: Intro to Artificial Intelligence

Alice Gao

The Idea of Arc Consistency

 $x_0 = 0$ and $x_1 = 2$ do not lead to a solution. Why?

Handling Different Types of Constraints

Consider binary constraints only.

How should we handle unary constraints?

How should be handle constraints involving 3 or more variables?

Notation for an Arc

▶ X and Y are two variables. c(X, Y) is a binary constraint.

$$D_X \quad \underbrace{X} \quad \underbrace{\langle X, c(X,Y) \rangle}_{c(X,Y)} \quad \underbrace{\langle Y, c(X,Y) \rangle}_{Y} \quad D_Y$$

• $\langle X, c(X, Y) \rangle$ denotes an arc.

X is the primary variable and Y is the secondary variable.

The Arc Consistency Definition

Definition (Arc Consistency)

An arc $\langle X, c(X, Y) \rangle$ is arc-consistent if and only if for every value v in D_X , there is a value w in D_Y such that (v, w) satisfies the constraint c(X, Y).

Applying The Arc Consistency Definition

Question: Consider the constraint X < Y. Let $D_X = \{1, 2\}$ and $D_Y = \{1, 2\}$. Is the arc $\langle X, X < Y \rangle$ consistent? (A) Yes. (B) No. (C) I don't know. Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP Backtracking Search The Arc Consistency Definition The AC-3 Arc Consistency Algorithm Combining Backtracking and Arc Consistence

Revisiting the Learning goals

CS 486/686: Intro to Artificial Intelligence

Alice Gao 33 / 41

The AC-3 Arc Consistency Algorithm

Algorithm 1 The AC-3 Algorithm

- 1: put every arc in the set S.
- 2: while S is not empty do
- 3: select and remove $\langle X, c(X,Y) \rangle$ from S
- 4: remove every value in D_X that doesn't have a value in D_Y that satisfies the constraint c(X, Y)
- 5: **if** D_X was reduced **then**
- 6: **if** D_X is empty **then return** false
- 7: for every $Z \neq Y,$ add $\langle Z, c'(Z,X) \rangle$ to S return true


Why do we need to add arcs back to S?

Q: After reducing a variable's domain, we may need to add arcs back to S. Why?

A: Reducing a variable's domain may cause a previously consistent arc to become inconsistent.

Example:

Trace the AC-3 Algorithm on 4-Queens Problem

Properties of the AC-3 Algorithm

- Does the order of removing arcs matter?
- Three possible outcomes of the arc consistency algorithm:
- Is AC-3 guaranteed to terminate?

Learning Goals

Examples of CSP Problems

Formulating a CSP

Solving a CSP Backtracking Search The Arc Consistency Definition The AC-3 Arc Consistency Algorithm Combining Backtracking and Arc Consistency

Revisiting the Learning goals

CS 486/686: Intro to Artificial Intelligence

Combining Backtracking and Arc Consistency

- 1. Perform backtracking search.
- 2. After each value assignment, perform arc consistency.
- 3. If a domain is empty, terminate and return no solution.
- 4. If a unique solution is found, return the solution.
- 5. Otherwise, continue with backtracking search on the unassigned variables.

Solving 4-Queens Problem with Backtracking and AC-3

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- Formulate a real-world problem as a constraint satisfaction problem.
- Trace the execution of the backtracking search algorithm.
- Verify whether a constraint is arc-consistent.
- ► Trace the execution of the AC-3 arc consistency algorithm.
- Trace the execution of the backtracking search algorithm with arc consistency.
- Trace the execution of the backtracking search algorithm with arc consistency and with heuristics for choosing variables and values.