
Heuristic Search

Alice Gao
Lecture 3

Readings: RN 3.5 (esp. 3.5.2), PM 3.6, 3.7.

CS 486/686: Intro to Artificial Intelligence Alice Gao 1 / 45



Outline

Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*
Lowest-Cost-First Search
Greedy Best-First Search
A* Search

Designing an Admissible Heuristic

Pruning the Search Space

CS 486/686: Intro to Artificial Intelligence Alice Gao 2 / 45



Learning goals

By the end of the lecture, you should be able to
▶ Describe motivations for applying heuristic search algorithms.
▶ Trace the execution of and implement the Lowest-cost-first

search, Greedy best-first search and A* search algorithm.
▶ Describe properties of the Lowest-cost-first, Greedy best-first

and A* search algorithms.
▶ Design an admissible heuristic function for a search problem.

Describe strategies for choosing among multiple heuristic
functions.

▶ Describes strategies for pruning a search space.

CS 486/686: Intro to Artificial Intelligence Alice Gao 3 / 45



Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*

Designing an Admissible Heuristic

Pruning the Search Space

CS 486/686: Intro to Artificial Intelligence Alice Gao 4 / 45



Why Heuristic Search?

How would ___ choose which one of the two states to expand?
▶ an uninformed search algorithm
▶ humans

5 3

8 7 6

2 4 1

1 2 3

4 5

7 8 6

CS 486/686: Intro to Artificial Intelligence Alice Gao 5 / 45



Why Heuristic Search

An uninformed search algorithm
▶ considers every state to be the same.
▶ does not know which state is closer to the goal.
▶ may not find the optimal solution.

An heuristic search algorithm
▶ uses heuristics to estimate how close the state is to a goal.
▶ try to find the optimal solution.

CS 486/686: Intro to Artificial Intelligence Alice Gao 6 / 45



Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*
Lowest-Cost-First Search
Greedy Best-First Search
A* Search

Designing an Admissible Heuristic

Pruning the Search Space

CS 486/686: Intro to Artificial Intelligence Alice Gao 7 / 45



The Cost Function

Suppose that we are executing a search algorithm
and we have added a path ending at n to the frontier.
cost(n) is the actual cost of the path ending at n.

CS 486/686: Intro to Artificial Intelligence Alice Gao 8 / 45



The Heuristic Function

Definition (search heuristic)
A search heuristic h(n) is an estimate of the cost of the cheapest
path from node n to a goal node.
In general, h(n) can be arbitrary.
However, a good heuristic function has the following properties.

▶ problem-specific.
▶ non-negative.
▶ h(n) = 0 if n is a goal node.
▶ h(n) must be easy to compute (without search).

CS 486/686: Intro to Artificial Intelligence Alice Gao 9 / 45



LCFS, GBFS, and A*

▶ LCFS: remove the path with the lowest cost cost(n).
▶ GBFS: remove the path with the lowest heuristic value h(n).
▶ A*: remove the path with the lowest cost + heuristic value

cost(n) + h(n).

CS 486/686: Intro to Artificial Intelligence Alice Gao 10 / 45



Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*
Lowest-Cost-First Search
Greedy Best-First Search
A* Search

Designing an Admissible Heuristic

Pruning the Search Space

CS 486/686: Intro to Artificial Intelligence Alice Gao 11 / 45



Lowest-cost-first search

▶ Frontier is a priority queue ordered by cost(n).
▶ Expand the path with the lowest cost(n).

CS 486/686: Intro to Artificial Intelligence Alice Gao 12 / 45



Trace LCFS on a search graph

If there is a tie, remove nodes from the frontier in alphabetical
order.

CS 486/686: Intro to Artificial Intelligence Alice Gao 13 / 45



Properties of LCFS

▶ Space and Time Complexities

Both complexities are exponential.
LCFS examines a lot of paths to ensure that
it returns the optimal solution first.

▶ Completeness and Optimality

Yes and yes under mild conditions:
(1) The branching factor is finite.
(2) The cost of every edge is bounded below by a positive
constant.

CS 486/686: Intro to Artificial Intelligence Alice Gao 14 / 45



Properties of LCFS

▶ Space and Time Complexities

Both complexities are exponential.
LCFS examines a lot of paths to ensure that
it returns the optimal solution first.

▶ Completeness and Optimality

Yes and yes under mild conditions:
(1) The branching factor is finite.
(2) The cost of every edge is bounded below by a positive
constant.

CS 486/686: Intro to Artificial Intelligence Alice Gao 14 / 45



Properties of LCFS

▶ Space and Time Complexities

Both complexities are exponential.
LCFS examines a lot of paths to ensure that
it returns the optimal solution first.

▶ Completeness and Optimality

Yes and yes under mild conditions:
(1) The branching factor is finite.
(2) The cost of every edge is bounded below by a positive
constant.

CS 486/686: Intro to Artificial Intelligence Alice Gao 14 / 45



Properties of LCFS

▶ Space and Time Complexities

Both complexities are exponential.
LCFS examines a lot of paths to ensure that
it returns the optimal solution first.

▶ Completeness and Optimality

Yes and yes under mild conditions:
(1) The branching factor is finite.
(2) The cost of every edge is bounded below by a positive
constant.

CS 486/686: Intro to Artificial Intelligence Alice Gao 14 / 45



Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*
Lowest-Cost-First Search
Greedy Best-First Search
A* Search

Designing an Admissible Heuristic

Pruning the Search Space

CS 486/686: Intro to Artificial Intelligence Alice Gao 15 / 45



Greedy Best-First Search

▶ Frontier is a priority queue ordered by h(n).
▶ Expand the node with the lowest h(n).

CS 486/686: Intro to Artificial Intelligence Alice Gao 16 / 45



Trace GBFS on a search graph

If there is a tie, remove nodes from the frontier in alphabetical
order.

CS 486/686: Intro to Artificial Intelligence Alice Gao 17 / 45



Properties of GBFS

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

No, GBFS is not complete. It could be stuck in a cycle.
No, GBFS is not optimal. GBFS may return a sub-optimal
path first.

CS 486/686: Intro to Artificial Intelligence Alice Gao 18 / 45



Properties of GBFS

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

No, GBFS is not complete. It could be stuck in a cycle.
No, GBFS is not optimal. GBFS may return a sub-optimal
path first.

CS 486/686: Intro to Artificial Intelligence Alice Gao 18 / 45



Properties of GBFS

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

No, GBFS is not complete. It could be stuck in a cycle.
No, GBFS is not optimal. GBFS may return a sub-optimal
path first.

CS 486/686: Intro to Artificial Intelligence Alice Gao 18 / 45



Properties of GBFS

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

No, GBFS is not complete. It could be stuck in a cycle.
No, GBFS is not optimal. GBFS may return a sub-optimal
path first.

CS 486/686: Intro to Artificial Intelligence Alice Gao 18 / 45



Properties of GBFS

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

No, GBFS is not complete. It could be stuck in a cycle.
No, GBFS is not optimal. GBFS may return a sub-optimal
path first.

CS 486/686: Intro to Artificial Intelligence Alice Gao 18 / 45



Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*
Lowest-Cost-First Search
Greedy Best-First Search
A* Search

Designing an Admissible Heuristic

Pruning the Search Space

CS 486/686: Intro to Artificial Intelligence Alice Gao 19 / 45



A* Search

▶ Frontier is a priority queue ordered by f(n) = cost(n) + h(n).
▶ Expand the node with the lowest f(n).

CS 486/686: Intro to Artificial Intelligence Alice Gao 20 / 45



Trace A* search on a search graph

If there is a tie, remove nodes from the frontier in alphabetical
order.

CS 486/686: Intro to Artificial Intelligence Alice Gao 21 / 45



Properties of A* Search

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

Yes and Yes, given mild conditions on the heuristic function.

CS 486/686: Intro to Artificial Intelligence Alice Gao 22 / 45



Properties of A* Search

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

Yes and Yes, given mild conditions on the heuristic function.

CS 486/686: Intro to Artificial Intelligence Alice Gao 22 / 45



Properties of A* Search

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

Yes and Yes, given mild conditions on the heuristic function.

CS 486/686: Intro to Artificial Intelligence Alice Gao 22 / 45



Properties of A* Search

▶ Space and Time Complexities

Both complexities are exponential.

▶ Completeness and Optimality

Yes and Yes, given mild conditions on the heuristic function.

CS 486/686: Intro to Artificial Intelligence Alice Gao 22 / 45



A* is Optimal

Definition (admissible heuristic)
A heuristic h(n) is admissible if it never over-estimates
the cost of the cheapest path from node n to a goal node.

Theorem (Optimality of A*)
If the heuristic h(n) is admissible,
the solution found by A* is optimal.

CS 486/686: Intro to Artificial Intelligence Alice Gao 23 / 45



A* is Optimally Efficient

Among all optimal algorithms that start from the same start node
and use the same heuristic, A* expands the fewest nodes.

CS 486/686: Intro to Artificial Intelligence Alice Gao 24 / 45



Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*

Designing an Admissible Heuristic

Pruning the Search Space

CS 486/686: Intro to Artificial Intelligence Alice Gao 25 / 45



Some Heuristic Functions for 8-Puzzle

▶ Manhattan Distance Heuristic:
The sum of the Manhattan distances of the tiles from their
goal positions

▶ Misplaced Tile Heuristic:
The number of tiles that are NOT in their goal positions

Both heuristic functions are admissible.

Initial State

5 3

8 7 6

2 4 1

Goal State

1 2 3

4 5 6

7 8

CS 486/686: Intro to Artificial Intelligence Alice Gao 26 / 45



Constructing an Admissible Heuristic

1. Define a relaxed problem by simplifying or removing
constraints on the original problem.

2. Solve the relaxed problem without search.
3. The cost of the optimal solution to the relaxed problem is

an admissible heuristic for the original problem.

CS 486/686: Intro to Artificial Intelligence Alice Gao 27 / 45



Constructing an Admissible Heuristic for 8-Puzzle

8-puzzle: A tile can move from square A to square B
▶ if A and B are adjacent, and
▶ B is empty.

Which heuristics can we derive from
relaxed versions of this problem?

CS 486/686: Intro to Artificial Intelligence Alice Gao 28 / 45



CQ: Constructing an Admissible Heuristic

CQ: Which heuristics can we derive from the following
relaxed 8-puzzle problem?
A tile can move from square A to square B
if A and B are adjacent.
(A) The Manhattan distance heuristic
(B) The Misplaced tile heuristic
(C) Another heuristic not described above

CS 486/686: Intro to Artificial Intelligence Alice Gao 29 / 45



CQ: Constructing an Admissible Heuristic

CQ: Which heuristics can we derive from the following
relaxed 8-puzzle problem?
A tile can move from square A to square B.
(A) The Manhattan distance heuristic
(B) The Misplaced tile heuristic
(C) Another heuristic not described above

CS 486/686: Intro to Artificial Intelligence Alice Gao 30 / 45



Which Heuristic is Better?

▶ We want a heuristic to be admissible.
▶ Want a heuristic to have higher values (close to h∗).
▶ Prefer a heuristic that is very different for different states.

CS 486/686: Intro to Artificial Intelligence Alice Gao 31 / 45



Dominating Heuristic

Definition (dominating heuristic)
Given heuristics h1(n) and h2(n). h2(n) dominates h1(n) if

▶ (∀n (h2(n) ≥ h1(n))).
▶ (∃n (h2(n) > h1(n))).

Theorem
If h2(n) dominates h1(n), A* using h2 will never expand more
nodes than A* using h1.

CS 486/686: Intro to Artificial Intelligence Alice Gao 32 / 45



CQ: Which Heuristic of 8-puzzle is Better?

CQ: Which of the two heuristics of the 8-puzzle is better?
(A) The Manhattan distance heuristic dominates

the Misplaced tile heuristic.
(B) The Misplaced tile heuristic dominates

the Manhattan distance heuristic.
(C) Neither dominates the other one.

CS 486/686: Intro to Artificial Intelligence Alice Gao 33 / 45



Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*

Designing an Admissible Heuristic

Pruning the Search Space

CS 486/686: Intro to Artificial Intelligence Alice Gao 34 / 45



Cycle Pruning
▶ What is cycle pruning?

Whenever we realize that we are following a cycle, we should
stop expanding the path.

▶ Why do we want to perform cycle pruning?

Cycles may cause an algorithm to not terminate, e.g. DFS.
Exploring a cycle is a waste of time since it cannot be part of
a solution.

CS 486/686: Intro to Artificial Intelligence Alice Gao 35 / 45



Cycle Pruning
▶ What is cycle pruning?

Whenever we realize that we are following a cycle, we should
stop expanding the path.

▶ Why do we want to perform cycle pruning?

Cycles may cause an algorithm to not terminate, e.g. DFS.
Exploring a cycle is a waste of time since it cannot be part of
a solution.

CS 486/686: Intro to Artificial Intelligence Alice Gao 35 / 45



Cycle Pruning
▶ What is cycle pruning?

Whenever we realize that we are following a cycle, we should
stop expanding the path.

▶ Why do we want to perform cycle pruning?

Cycles may cause an algorithm to not terminate, e.g. DFS.
Exploring a cycle is a waste of time since it cannot be part of
a solution.

CS 486/686: Intro to Artificial Intelligence Alice Gao 35 / 45



Cycle Pruning
▶ What is cycle pruning?

Whenever we realize that we are following a cycle, we should
stop expanding the path.

▶ Why do we want to perform cycle pruning?

Cycles may cause an algorithm to not terminate, e.g. DFS.
Exploring a cycle is a waste of time since it cannot be part of
a solution.

CS 486/686: Intro to Artificial Intelligence Alice Gao 35 / 45



Search w/ Cycle Pruning
▶ How do we perform cycle pruning?

Algorithm 1 Search w/ Cycle Pruning

1: ...
2: for every neighbour n of nk do
3: if n ̸∈ ⟨n0, . . . , nk⟩ then
4: add ⟨n0, . . . , nk, n⟩ to frontier;
5: ...

▶ What is the complexity of cycle pruning for DFS and BFS?

DFS: constant time. remember the nodes on the current path.
BFS: linear in path length.

CS 486/686: Intro to Artificial Intelligence Alice Gao 36 / 45



Search w/ Cycle Pruning
▶ How do we perform cycle pruning?

Algorithm 2 Search w/ Cycle Pruning

1: ...
2: for every neighbour n of nk do
3: if n ̸∈ ⟨n0, . . . , nk⟩ then
4: add ⟨n0, . . . , nk, n⟩ to frontier;
5: ...

▶ What is the complexity of cycle pruning for DFS and BFS?

DFS: constant time. remember the nodes on the current path.
BFS: linear in path length.

CS 486/686: Intro to Artificial Intelligence Alice Gao 36 / 45



Search w/ Cycle Pruning
▶ How do we perform cycle pruning?

Algorithm 3 Search w/ Cycle Pruning

1: ...
2: for every neighbour n of nk do
3: if n ̸∈ ⟨n0, . . . , nk⟩ then
4: add ⟨n0, . . . , nk, n⟩ to frontier;
5: ...

▶ What is the complexity of cycle pruning for DFS and BFS?

DFS: constant time. remember the nodes on the current path.
BFS: linear in path length.

CS 486/686: Intro to Artificial Intelligence Alice Gao 36 / 45



Search w/ Cycle Pruning
▶ How do we perform cycle pruning?

Algorithm 4 Search w/ Cycle Pruning

1: ...
2: for every neighbour n of nk do
3: if n ̸∈ ⟨n0, . . . , nk⟩ then
4: add ⟨n0, . . . , nk, n⟩ to frontier;
5: ...

▶ What is the complexity of cycle pruning for DFS and BFS?

DFS: constant time. remember the nodes on the current path.
BFS: linear in path length.

CS 486/686: Intro to Artificial Intelligence Alice Gao 36 / 45



Multiple-Path Pruning

▶ Why do we want to perform multi-path pruning?

If we have already found a path to a node, we can discard
other paths to the same node.

▶ What is the relationship between cycle pruning
and multi-path pruning?

Cycle pruning is a special case of multi-path pruning.

CS 486/686: Intro to Artificial Intelligence Alice Gao 37 / 45



Multiple-Path Pruning

▶ Why do we want to perform multi-path pruning?

If we have already found a path to a node, we can discard
other paths to the same node.

▶ What is the relationship between cycle pruning
and multi-path pruning?

Cycle pruning is a special case of multi-path pruning.

CS 486/686: Intro to Artificial Intelligence Alice Gao 37 / 45



Multiple-Path Pruning

▶ Why do we want to perform multi-path pruning?

If we have already found a path to a node, we can discard
other paths to the same node.

▶ What is the relationship between cycle pruning
and multi-path pruning?

Cycle pruning is a special case of multi-path pruning.

CS 486/686: Intro to Artificial Intelligence Alice Gao 37 / 45



Multiple-Path Pruning

▶ Why do we want to perform multi-path pruning?

If we have already found a path to a node, we can discard
other paths to the same node.

▶ What is the relationship between cycle pruning
and multi-path pruning?

Cycle pruning is a special case of multi-path pruning.

CS 486/686: Intro to Artificial Intelligence Alice Gao 37 / 45



Search w/ Multi-Path Pruning
How do we perform multi-path pruning?

Algorithm 5 Search w/ Multi-Path Pruning

1: procedure Search(Graph, Start node s, Goal test goal(n))
2: frontier := {⟨s⟩};
3: explored := {};
4: while frontier is not empty do
5: select and remove path ⟨n0, . . . , nk⟩ from frontier;
6: if nk ̸∈ explored then
7: add nk to explored
8: if goal(nk) then
9: return ⟨n0, . . . , nk⟩;

10: for every neighbour n of nk do
11: add ⟨n0, . . . , nk, n⟩ to frontier;
12: return no solution

CS 486/686: Intro to Artificial Intelligence Alice Gao 38 / 45



Search w/ Multi-Path Pruning
How do we perform multi-path pruning?

Algorithm 6 Search w/ Multi-Path Pruning

1: procedure Search(Graph, Start node s, Goal test goal(n))
2: frontier := {⟨s⟩};
3: explored := {};
4: while frontier is not empty do
5: select and remove path ⟨n0, . . . , nk⟩ from frontier;
6: if nk ̸∈ explored then
7: add nk to explored
8: if goal(nk) then
9: return ⟨n0, . . . , nk⟩;

10: for every neighbour n of nk do
11: add ⟨n0, . . . , nk, n⟩ to frontier;
12: return no solution
CS 486/686: Intro to Artificial Intelligence Alice Gao 38 / 45



A problem with multi-path pruning

▶ Multi-path pruning says that we keep the first path to a node
and discard the rest.

▶ What if the first path to a node is not the least-cost path?

▶ Can multi-path pruning cause a search algorithm to
fail to find the optimal solution?

CS 486/686: Intro to Artificial Intelligence Alice Gao 39 / 45



Lowest-cost-first search w/ multi-path pruning

Can Lowest-Cost-First Search with multi-path pruning
discard the optimal solution?
(A) Yes, it is possible.
(B) No, it is not possible.

CS 486/686: Intro to Artificial Intelligence Alice Gao 40 / 45



A* search w/ multi-path pruning

Can A* search with an admissible heuristic and multi-path pruning
discard the optimal solution?
(A) Yes, it is possible.
(B) No, it is not possible.

CS 486/686: Intro to Artificial Intelligence Alice Gao 41 / 45



Finding optimal solution w/ multi-path pruning

What if a subsequent path to n is shorter than the first path
found?

▶ Remove all paths from the frontier that use the longer path.
▶ Change the initial segment of the paths on the frontier

to use the shorter path.
▶ Make sure that we find the least-cost path to a node first.

CS 486/686: Intro to Artificial Intelligence Alice Gao 42 / 45



Consistent Heuristic
▶ An admissible heuristic requires that:

For any node m and any goal node g,

h(m)− h(g) ≤ cost(m, g).

▶ To ensure that A* with multi-path pruning is optimal,
we need a consistent heuristic function: For any two nodes m
and n,

h(m)− h(n) ≤ cost(m,n).

▶ A consistent heuristic satisfies the monotone restriction:
For any edge from m to n,

h(m)− h(n) ≤ cost(m,n).

CS 486/686: Intro to Artificial Intelligence Alice Gao 43 / 45



Consistent Heuristic
▶ An admissible heuristic requires that:

For any node m and any goal node g,

h(m)− h(g) ≤ cost(m, g).

▶ To ensure that A* with multi-path pruning is optimal,
we need a consistent heuristic function: For any two nodes m
and n,

h(m)− h(n) ≤ cost(m,n).

▶ A consistent heuristic satisfies the monotone restriction:
For any edge from m to n,

h(m)− h(n) ≤ cost(m,n).

CS 486/686: Intro to Artificial Intelligence Alice Gao 43 / 45



Consistent Heuristic
▶ An admissible heuristic requires that:

For any node m and any goal node g,

h(m)− h(g) ≤ cost(m, g).

▶ To ensure that A* with multi-path pruning is optimal,
we need a consistent heuristic function: For any two nodes m
and n,

h(m)− h(n) ≤ cost(m,n).

▶ A consistent heuristic satisfies the monotone restriction:
For any edge from m to n,

h(m)− h(n) ≤ cost(m,n).

CS 486/686: Intro to Artificial Intelligence Alice Gao 43 / 45



Constructing Consistent Heuristics

▶ Most admissible heuristic functions are consistent.

▶ It’s challenging to come up with a heuristic function that is
admissible but not consistent.

CS 486/686: Intro to Artificial Intelligence Alice Gao 44 / 45



Revisiting the learning goals

By the end of the lecture, you should be able to
▶ Describe motivations for applying heuristic search algorithms.
▶ Trace the execution of and implement the Lowest-cost-first

search, Greedy best-first search and A* search algorithm.
▶ Describe properties of the Lowest-cost-first, Greedy best-first

and A* search algorithms.
▶ Design an admissible heuristic function for a search problem.

Describe strategies for choosing among multiple heuristic
functions.

▶ Describes strategies for pruning a search space.

CS 486/686: Intro to Artificial Intelligence Alice Gao 45 / 45


	Learning Goals
	Why Heuristic Search
	LCFS, GBFS, and A*
	Lowest-Cost-First Search
	Greedy Best-First Search
	A* Search

	Designing an Admissible Heuristic
	Pruning the Search Space

