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CS 486/686 Lecture 23

1 Learning Goals

• Determine Pareto optimal outcomes of a 2-player normal form game.

• Calculate a mixed strategy Nash equilibrium of a 2-player normal form game.

2 Pareto Optimality

Recall the “Dancing or Running” game. The following is the payoff matrix for this game:

Bob

dancing running

Alice
dancing (2, 2) (0, 0)

running (0, 0) (1, 1)

Our intuition tells us that this is a coordination game. Alice and Bob want to coordi-
nate on choosing the same activity, since they’re both happier when they’re doing the
same thing. This intuition is confirmed by the Nash equilibrium solution concept. Both
(dancing, dancing) and (running, running) are stable and are Nash equilibria of this game.

However, looking at the payoff matrix, Alice and Bob coordinating on dancing seems better
than them coordinating on running, since their utilities are (2, 2) if they both go dancing,
and only (1, 1) if they both go running.

Unfortunately, Nash equilibrium doesn’t say anything about the fact that going dancing
is better than going running. Whenever there’s a game with multiple Nash equilibria, the
concept never says which of the Nash equilibria is the best.

Is there any way to formalize this intuition, compare different Nash equilibria and determine
one is better than the others?

This is where we can use the concepts called Pareto dominance and Pareto optimality to
compare different outcomes of a game:

• Pareto dominance: An outcome o Pareto dominates another outcome o′ iff every
player is weakly better off in o and at least one player is strictly better off in o.

• A Pareto optimal outcome: An outcome o is Pareto optimal iff no other outcome
o′ Pareto dominates o.

Pareto dominance is a way to compare multiple outcomes of a game. In the definition, out-
come o is being compared with outcome o′. An outcome of a game is a combination of actions
of the players. In the “Dancing or Running?” game, the outcomes are (dancing, dancing),
(dancing, running), (running, dancing), and (running, running).

There are two properties that need to be satisfied in order for an outcome o to Pareto
dominate and outcome o′.

The first property is that every player is weakly better off in o. The logical formula to express
this statement is Ui(o) ≥ Ui(o

′),∀i.
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The second property is that at least one player is strictly better off in o. The logical formula
to express this statement is Ui(o) > Ui(o

′),∃i.

Notice that there could be situations where there are two outcomes, and outcome o does
not Pareto dominate outcome o′, but also outcome o′ does not Pareto dominate outcome
o. Therefore, a Pareto dominance relationship cannot be established between every pair of
outcomes.

It seems from the name that a Pareto optimal outcome is the best outcome among all possible
outcomes of a game. The definition of a Pareto optimal outcome is a bit tricky, since it may
lead some to believe that if an outcome is the best or optimal, than it should Pareto dominate
all other outcomes.

However, this is different from the actual definition of a Pareto optimal outcome. To un-
derstand this difference, look at the following two statements and think about the difference
between them:

• An outcome o Pareto dominates all other outcomes.

• An outcome o is NOT Pareto dominated by any other outcome.

The first statement is stronger than the second statement, which is actually the definition of
a Pareto optimal outcome. The difference between these two statements will become more
clear as more examples are presented.

We can use Pareto optimality on the “Dancing or Running?” game.

Problem: How many of the four outcomes are Pareto optimal?

Bob

dancing running

Alice
dancing (2, 2) (0, 0)

running (0, 0) (1, 1)

(A) 0

(B) 1

(C) 2

(D) 3

(E) 4

Solution: This is a relatively simple application of the definition, since
(dancing, dancing) Pareto dominates all other outcomes. If we compare
(dancing, dancing) and (running, running), (dancing, dancing) Pareto dominates
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(running, running). Therefore, (running, running) does not Pareto dominate
(dancing, dancing).

Similarly, (dancing, dancing) Pareto dominates (dancing, running) and it dominates
(running, dancing). Therefore, neither (dancing, running) or (running, dancing)
Pareto dominates (dancing, dancing).

Since none of the other outcomes dominate (dancing, dancing), (dancing, dancing) is
the only Pareto optimal outcome in this game.

The correct answer is (B) 1.

3 Prisoner’s Dilemma

Prisoner’s dilemma is one of the most well-known and studied games in game theory. The
interesting thing about this game is that if the two prisoners are able to communicate, then
they can achieve the best outcome for both of them. However, if they are not able to
communicate, and they act purely out of self-interest, they both achieve the worst possible
outcome.

There are many versions of Prisoner’s dilemma, but the game we’re looking at goes as follows:
Alice and Bob have been caught by the police. Each has been offered a deal to testify against
the other. They had originally agreed not to testify against each other. However, since this
agreement cannot be enforced, each must choose whether to honour it. If both refuse to
testify, both will be convicted of a minor charge due to lack of evidence and serve 1 year in
prison. If only one testifies, the defector will go free and the other one will be convicted of a
serious charge and serve 3 years in prison. If both testify, both will be convicted of a major
charge and serve 2 years in prison.

Bob

refuse testify

Alice
refuse (−1,−1) (−3, 0)

testify (0,−3) (−2,−2)

We’re going to look at three problems, one for each of the solution concepts: dominant
strategy equilibrium, Nash equilibrium, and Pareto optimal outcomes.

Problem: Which outcome, if any, is a dominant strategy equilibrium?
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Bob

refuse testify

Alice
refuse (−1,−1) (−3, 0)

testify (0,−3) (−2,−2)

(A) (refuse, refuse)

(B) (refuse, testify)

(C) (testify, refuse)

(D) (testify, testify)

(E) There is no dominant strategy equilibrium.

Solution: First notice that this game is symmetric, so it’s sufficient to consider only
one of the two players. Let’s consider Alice.

If we want to characterize a dominant strategy equilibrium, we need each player to
have a dominant strategy. Recall that a dominant strategy is the best action a player
can take, regardless of what actions other players take. So, we can look at the different
actions Bob could take, and see if Alice has an action that is the best for all of Bob’s
possible actions.

If Bob decides to refuse to testify, then Alice has two possible actions. If she refuses
to testify as well, than she will get a utility of -1. If Alice testifies, she gets a utility
of 0. Clearly 0 > −1, so Alice will choose to testify.

If Bob decides to testify, then Alice again has two possible actions. If she refuses to
testify, then she will get a utility of -3. If Alice testifies, she will get a utility of -2.
Since −2 > −3, Alice will choose to testify.

Therefore, regardless of what Bob does, Alice always prefers to testify, so it’s a dom-
inant strategy for Alice. Since this game is symmetric, Bob also has testify as a
dominant strategy.

Since both Alice and Bob have testify as their dominant strategy, the dominant strat-
egy equilibrium for this game is (testify, testify).

The correct answer is (D) (testify, testify).
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Problem: How many of the four outcomes are pure-strategy Nash equilibria?

Bob

refuse testify

Alice
refuse (−1,−1) (−3, 0)

testify (0,−3) (−2,−2)

(A) 0

(B) 1

(C) 2

(D) 3

(E) 4

Solution: Since this game is fairly small, we can use the brute force method of
going through all four possible outcomes and verifying whether each outcome is a
Nash equilibrium or not.

Consider (testify, testify). To verify that this is a Nash equilibrium, we need to ask
whether either player can improve their utility by deviating to another action. If a
player can improve their utility by deviating, then this outcome is not a Nash equilib-
rium.

For (testify, testify), if Alice chooses to deviate, she will get a utility of -3 instead of
-2, so she would get a worse utility if she deviates. If Bob chooses to deviate, he will
also get a utility of -3 instead of -2, so he would get a worse utility if he deviates as
well.

Since both players will get lower utilities by deviating, they would not want to deviate.
Therefore, (defect, defect) is a Nash equilibrium of this game.

For (refuse, refuse), if Alice chooses to deviate, she will get a utility of 0 instead of -1,
so she would get a better utility if she deviates. Similarly for Bob, he will get a utility
of 0 instead of 1, if he deviates. Since both players want to deviate, (refuse, refuse) is
not a Nash equilibrium.

Similar reasoning can be used to verify that (testify, refuse) and (refuse, testify) are
not Nash equilibria since one of the players in either outcome would do better by
deviating from their strategy.

Therefore, we can conclude that the only pure-strategy Nash equilibrium of this game
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is (testify, testify). A simpler way of getting this answer requires you to realize that the
dominant strategy equilibrium is a stronger concept than Nash equilibrium. In fact,
if an outcome is a dominant strategy equilibrium, then it is also a Nash equilibrium.

To understand this, note that when we’re characterizing a dominant strategy equilib-
rium, we’re finding a dominant strategy for each player. The definitions of a dominant
strategy is a player wants to take a specific action regardless of what other players do.

If an action is already a dominant strategy, then it also would satisfy the requirements
for Nash equilibrium. The requirement for Nash equilibrium is an action that the
player prefers to take given what the other players are doing. This is just a weaker
form of dominant strategy.

In other words, if a player prefers a particular action regardless of what other players
are doing, then the player definitely also prefers this action given what other players
are doing.

The correct answer is (B) 1.

Problem: How many of the four outcomes are Pareto optimal?

Bob

refuse testify

Alice
refuse (−1,−1) (−3, 0)

testify (0,−3) (−2,−2)

(A) 0

(B) 1

(C) 2

(D) 3

(E) 4

Solution: We can go through all four outcomes and verify whether each outcome is
Pareto optimal or not.

Consider (testify, testify). To verify that an outcome is Pareto optimal, we need to
check if any other outcome Pareto dominates the outcome in question. We can easily
see that (refuse, refuse) Pareto dominates (testify, testify). Both players strictly prefers
(refuse, refuse) over (testify, testify) since they both get a utility of -1 instead of -2.
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Since we’ve found an outcome that Pareto dominates (testify, testify), we can say that
(testify, testify) is not Pareto optimal.

Now consider (refuse, refuse). We need to verify that (refuse, refuse) is not Pareto
dominated by any of the other three outcomes: (refuse, testify), (testify, refuse), and
(testify, testify).

Comparing (refuse, refuse) to (testify, refuse), we can see that Alice prefers (testify,
refuse) since she gets a utility of 0 rather than -1, but Bob prefers (refuse, refuse) since
he gets a utility of -1 instead of -3. Given this, we know that (testify, refuse) does not
Pareto dominate (refuse, refuse).

Using the same argument as (testify, refuse), we can also verify that (refuse, testify)
does not Pareto dominate (refuse, refuse), since this game is symmetric.

For (testify, testify), we’ve already established that (refuse, refuse) Pareto dominates
(testify, testify), so (testify, testify) cannot Pareto dominate (refuse, refuse). Both
players prefer (refuse, refuse) to (testify, testify).

Since we’ve established that no other outcome dominates (refuse, refuse), we can say
that (refuse, refuse) is Pareto optimal.

Using the same strategy as above, we can establish that (refuse, testify) and (testify,
refuse) are also Pareto optimal.

Notice two things here: The first is that the definition of Pareto optimality does not
require Pareto dominance over all other outcomes. That is a much stronger condition.
Instead, it only requires that the outcome is not dominated by any other outcome.

The second is that there can be two outcomes where neither outcome Pareto domi-
nates the other. Comparing (refuse, refuse) and (refuse, testify), Alice prefers (refuse,
refuse), but Bob prefers (refuse, testify). In this case, neither outcome Pareto domi-
nates the other.

The correct answer is (D) 3.

After thinking about these three problems, we can start to think about this game strategy
a little more. Looking rationally at this game, (refuse, refuse) seems to be the best outcome
for both players. If both players testify, they both serve 2 years in prison, but if they both
refuse to testify, then they both only serve 1 year in prison.

It turns out, though, that there is only one dominant strategy equilibrium and only one
pure-strategy Nash equilibrium, and they are both (testify, testify). Even more interesting,
the only dominant strategy equilibrium and only Nash equilibrium is also the only outcome
that is not Pareto optimal.
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(testify, testify) is the worst outcome in multiple senses, yet it’s the only stable one. There’s
quite a bit of research on how people can be motivated to achieving the (refuse, refuse)
outcome when playing this kind of game in practice.

From numerous economic experiments on the Prisoner’s Dilemma game, it was found that
if the two players are only going to play the game once, or a small number of times, then
it’s very difficult to sustain or motivate cooperation.

However, if the two players know that they’re going to repeatedly interact with each other
multiple times, there is a lot more cooperation between players since they can build a trust
between each other which will motivate them to cooperate and achieve the (refuse, refuse)
outcome.

4 Mixed-Strategy Nash Equilibrium

4.1 Matching quarters

We will use a game called “Matching quarters” to introduce the solution concept called
mixed-strategy Nash equilibrium.

The story for this game goes as follows: Alice and Bob are playing the game of matching
quarters. They each show one side of a quarter. Alice wants the sides of the two quarters to
match, whereas Bob wants the sides of the two quarters to NOT match.

Bob

heads tails

Alice
heads (1, 0) (0, 1)

tails (0, 1) (1, 0)

Problem:

How many of the four outcomes are pure-strategy Nash equilibria?

Bob

heads tails

Alice
heads (1, 0) (0, 1)

tails (0, 1) (1, 0)

(A) 0

(B) 1

(C) 2

(D) 3
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(E) 4

Solution: The correct answer is (A).

Recall that every finite game has a Nash equilibrium. So why doesn’t the “Matching quar-
ters” game have a Nash equilibrium? This is because the exact statement was that every
finite game has a mixed-strategy Nash equilibrium, and a pure-strategy Nash equilibrium is
just a special case of a mixed-strategy Nash equilibrium.

“Matching quarters” doesn’t have a pure-strategy Nash equilibrium, but it is guaranteed
to have a mixed-strategy Nash equilibrium according to the statement. We can derive this
mixed-strategy Nash equilibrium.

Example: To derive a mixed-strategy Nash equilibrium for this game, recall that a
mixed-strategy is a probability distribution over all the actions for all other players.
In this case, there are two actions per player, so Alice needs to play heads with some
probability, and tails with the rest of the probability. Bob also needs to play heads
with some probability, and tails with the rest of the probability.

In order to derive the mixed-strategy Nash equilibrium, we need to derive the mixed-
strategies for each of the players. Assume that Alice plays heads with probability p.
Similarly, Bob plays heads with probability q. We only need one probability for each
player to define this distribution, since there’s only 2 actions for each player.

To derive these probabilities, the general principle states that a player should choose
their probability such that the other players are indifferent between their actions.
Specifically for the “Matching quarters” game, Alice must choose a value for p such
that Bob is indifferent between his two actions. Similarly, Bob must choose a value
for q such that Alice is indifferent between her two actions.

Indifferent means that the expected utility of playing either action is the same for that
player. Bob being indifferent between his actions means that both of his actions give
him the same expected utility, so he doesn’t really care about which action he takes.

We can use this general principle to derive the probability for Alice. So, Alice needs
to choose a value for p such that Bob is indifferent between his actions. If Bob is
indifferent, than we can calculate his expected utility for each action and equate them
together to solve for p.

The expected utility if Bob plays heads is

UBob(heads) = p ∗ 0 + (1− p) ∗ 1 = 1− p.

When Bob plays heads, Alice plays heads with probability p, and the expected utility
for Bob in that case is 0, so we have p ∗ 0. When Bob plays heads, Alice plays tails
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with probability 1 − p, and the expected utility for Bob in that case is 1, so we have
(1− p) ∗ 1.

Similarly, the expected utility if Bob plays tails is

UBob(tails) = p ∗ 1 + (1− p) ∗ 0 = p.

We equate the expected utility of Bob playing heads to the expected utility of Bob
playing tails to get

UBob(heads) = UBob(tails)

1− p = p

p = 0.5.

The calculations for Bob are very similar:

UAlice(heads) = q ∗ 1 + (1− q) ∗ 0 = q

UAlice(tails) = q ∗ 0 + (1− q) ∗ 1 = 1− q

UAlice(heads) = UAlice(tails)

q = 1− q

q = 0.5.

Therefore, there is one mixed-strategy Nash equilibrium where Alice plays heads with
probability p = 0.5 and Bob plays heads with probability q = 0.5.

Now that we know how to derive a mixed-strategy Nash equilibrium, we can answer a second
question: What does it mean if a player is mixing between two actions?

The answer to this question is that it means that the two actions have the same expected
utilities for the player. It means that the player is indifferent between their actions, since
both actions have the same expected utility.

There’s a dynamic here where each player is choosing their mixing probability to make the
other player indifferent, but once they’re indifferent between the two actions, the mixing
probability doesn’t really matter to the player anymore.

Problem: Consider a 2-player normal form game and fix Bob’s strategy. Alice is
willing to play heads 60% of the time and tails 40% of the time. Which of the following
statements is true?

(A) Alice’s expected utility of playing heads is greater than her expected utility of
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playing tails.

(B) Alice’s expected utility of playing heads is less than her expected utility of playing
tails.

(C) Alice’s expected utility of playing heads is same as her expected utility of playing
tails.
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Solution: If Alice is willing to mix between two actions, if she’s willing to play either
action with positive probability, then that must mean that both actions give her the
same expected utility.

If one action gave her strictly better expected utility than the other, why would she
bother with playing the other action at all? She would always choose to play the action
with the better expected utility. If two actions give her different expected utilities, she
will always prefer to play the better one.

It’s only in the case where the two actions give the same expected utilities that Alice
is willing to mix between the two.

This may be confusing since the mixing probabilities have nothing to do with the
expected utilities. Whether she plays heads with a probability of 60% and tails with
40%, or she plays heads with 90% and tails with 10% doesn’t change the fact that the
expected utilities for both heads and tails must be the same.

The correct answer is (C) Alice’s expected utility of playing heads is the same as her
expected utility of playing tails.

4.2 Dancing or Concert?

We can look at another game called “Dancing or concert?” to calculate a mixed-strategy
Nash equilibrium.

The story for this game is as follows: Alice and Bob want to sign up for an activity together.
They both prefer to sign up for the same activity. However, Alice prefers dancing over going
to a concert whereas Bob prefers going to a concert over dancing.

Bob

dancing concert

Alice
dancing (2, 1) (0, 0)

concert (0, 0) (1, 2)

The next two problems are deriving the mixed-strategy Nash equilibrium.

Problem: At the mixed-strategy Nash equilibrium, with what probability does Alice
go dancing?

Bob

dancing concert

Alice
dancing (2, 1) (0, 0)

concert (0, 0) (1, 2)
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(A) 0

(B) 1/3

(C) 2/3

(D) 1

Solution: To answer this question, we must first derive the mixed-strategy Nash
equilibrium. There are two probability distributions: one for the actions of Alice, and
another for the actions of Bob. Since there are two actions for each player, we only
need 1 probability per player to specify each distribution.

Suppose that Alice goes dancing with probability p and Bob goes dancing with prob-
ability q.

Recall that the general principle states that since each player is mixing between two
actions, the two actions must give the player the same expected utility. As such, we
need to set p such that Bob gets the same expected utility regardless of whether he
goes dancing or goes to the concert.

From the payoff matrix, we can write the expected utilities of Bob for dancing and
going to the concert in terms of p:

UBob(dancing) = p ∗ 1 + (1− p) ∗ 0 = p

UBob(concert) = p ∗ 0 + (1− p) ∗ 2 = 2− 2p

In order for Bob to be indifferent, we need to equate UBob(dancing) and UBob(concert)
to get p:

UBob(dancing) = UBob(concert)

p = 2− 2p

p = 2/3.

Since we’re only looking for Alice’s probability, and we’ve derived p = 2/3, we can say
that Alice goes dancing with a probability of 2/3.

The correct answer is (C) 2/3.

Problem: At the mixed-strategy Nash equilibrium, with what probability does Bob
go dancing?
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Bob

dancing concert

Alice
dancing (2, 1) (0, 0)

concert (0, 0) (1, 2)

(A) 0

(B) 1/3

(C) 2/3

(D) 1

Solution: The process for finding q is very similar to the process for finding p.

From the payoff matrix, we can write the expected utilities of Alice for dancing and
going to the concert in terms of q:

UAlice(dancing) = q ∗ 2 + (1− q) ∗ 0 = 2q

UAlice(concert) = q ∗ 0 + (1− q) ∗ 1 = 1− q

In order for Alice to be indifferent, we need to equate UAlice(dancing) and
UAlice(concert) to get q:

UAlice(dancing) = UAlice(concert)

2q = 1− q

q = 1/3.

Since we’re only looking for Bob’s probability, and we’ve derived q = 1/3, we can say
that Bob goes dancing with a probability of 1/3.

The correct answer is (B) 1/3.
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