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1 Learning Goals

By the end of the lecture, you should be able to

• Model a one-off decision problem by constructing a decision network containing nodes,
arcs, conditional probability distributions, and a utility function

• Choose the best action by evaluating a decision network

2 The Weather Decision Network

Let’s look at another example of a decision network. This network is called the weather
decision network:

The weather node represents whether it rains or not on a particular day. Each day, we need
to decide whether to take an umbrella with us, or leave it at home.

Unfortunately, we do not directly observe the weather condition. Instead, we observe the
forecast, which is a noisy signal of the weather. The forecast can be sunny, cloudy, or rainy.
We make the decision of whether or not to bring an umbrella based on the forecast.

The utility function represents the agent’s happiness, which depends on the weather and
whether we decide to take an umbrella or not.

This decision network may look simple at first glance, but it’s a bit more complicated than
the previous mail pick-up robot example (shown below). In the robot example, the decision
to take either the short or long path, and the decision to wear pads or not, is made first.
Then, we observe the consequences of the decisions we’ve made.

In the weather decision network, the chance node forecast is the parent of the decision node
umbrella. This means that when the umbrella decision is made, all possible values of the
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chance node forecast must be considered. This is more difficult, since the decision of whether
to bring an umbrella or not depends on the forecast.

In general, when a decision node has either a chance node or another decision node as its
parent, it’s more difficult to work with than when all the decision nodes come first.

What values do we have to specify for this network?

First, we need the prior probabilities over the weather.

Forecast depends on weather, so we need a conditional probability distribution specifying
the probability of each value of forecast given each value of weather.

Umbrella is the decision node, so we choose the value for this when we’re solving the decision
network.

The utility function depends on two things: weather and umbrella. For each possible value
of weather, and each possible decision for umbrella, we have a possible utility for how happy
we are in that scenario.

Overall, we need three tables: one for weather, one for forecast, and one for the utility
function. The following are those three tables:

Weather
Weather P(Weather)
rain 0.3
norain 0.7

Forecast
Weather Forecast P (Forecast|Weather)
norain sunny 0.7
norain cloudy 0.2
norain rainy 0.1
rain sunny 0.15
rain cloudy 0.25
rain rainy 0.6

The utility function
Weather Umbrella u(Weather, Umbrella)
norain takeit 20
norain leaveit 100
rain takeit 70
rain leaveit 0

The second table describes how Forecast depends on Weather. There are six possible com-
binations because there are two possible values for weather (”rain” or ”norain”) and three
possible values for forecast (”sunny”, ”cloudy”, or ”rainy”).

Looking at the values in the table will show that the forecast is relatively accurate. When
it rains, the forecast has a 60% chance of being ”rainy”. When it doesn’t rain, the forecast
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has a 70% chance of being ”sunny”.

The forecast is a noisy signal of weather, so it’s not perfect. The other cases are when the
forecast is a bad prediction of the weather, but luckily, these numbers are small. The two
really bad cases, when weather is ”norain” and forecast is ”rainy”, and when weather is
”rain” and forecast is ”sunny”, have small probabilities of 10% and 15% respectively.

The final table describes the utility function, and there are four possibilities since there are
two possible values for weather and two possible decisions for umbrella.

To make sense of the utility function, let’s look at the good cases and bad cases.

What are the good cases? The two good cases are when it doesn’t rain and we leave the
umbrella at home, and when it does rain and we take the umbrella. For the first case, we’re
happy that it doesn’t rain, and we’re happy that we don’t have to carry an umbrella around,
so the utility is 100. For the second case, we’re less happy that it’s raining, but we’re happy
that we have an umbrella, so the utility is 70.

What are the bad cases? The two bad cases are when it doesn’t rain and we take the
umbrella, and when it does rain and we leave the umbrella at home. For the first case, we’re
happy that it doesn’t rain, but we’re less happy that we took the umbrella for no reason, so
the utility is 20. For the second case, we’re unhappy that it’s raining, and we’re even more
unhappy that we left the umbrella at home, so the utility is 0.

We will solve this network using two different approaches: enumerating all policies and the
variable elimination algorithm.

2.1 Solving the Weather Decision Network - Enumerating all Poli-
cies

To solve this network, we can enumerate all the policies, calculate their expected utilities,
and find the optimal policy that maximizes the expected utility.

A policy specifies what the agent should do under all contingencies. The solution to a
decision network is a policy.

What are contingencies? For the mail pick-up robot, the decisions did not depend on any-
thing, as they did not have any parent nodes. In the weather decision network, the umbrella
decision node depends on the forecast. Based on the value of forecast, there are a number
of possible worlds that we could be in. These possible worlds are the different contingencies
that must be considered.

In general, for each decision variable, a policy specifies a value for the decision variable for
each assignment of values to its parents. This is similar to planning, except we don’t know
what’s going to happen, so we have to plan for all possibilities.

For the weather decision network, how many possible policies are there? Forecast has 3
possible values (”rainy”, ”cloudy”, and ”sunny”), and it’s a parent node of the decision
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variable Umbrella. For each value of Forecast, there are two possible decisions (take or leave
umbrella). The total number of possible policies is 23 = 8.

The approach we’re taking in this section, enumerating all policies, is the brute-force ap-
proach. There is a fixed number of possible policies. In this case, there are 8 possible policies.
We can take each policy, calculate the expected utility of the agent if the agent follows that
policy, then choose the policy that maximizes the expected utility of the agent.

This approach always works for every decision network. However, even with relatively simple
networks like the weather decision network, there can be a large number of policies. To
enumerate through all the policies and calculate the expected utilities for each of them would
be computationally expensive. This is why we discuss the variable elimination algorithm later
in the lecture.

Although enumerating all policies is brute-force, it’s important to understand how to calcu-
late the expected utility of a policy in this way.

Example: Consider the policy π1 below.

• take the umbrella if the forecast is cloudy, and

• leave the umbrella at home otherwise

What is the expected utility of the policy π1? The following is the expression for the
expected utility of π1:

EU(π1) = P (norain) ∗ P (sunny|norain) ∗ u(norain, leaveit)

+ P (norain) ∗ P (cloudy|norain) ∗ u(norain, takeit)

+ P (norain) ∗ P (rainy|norain) ∗ u(norain, leaveit)

+ P (rain) ∗ P (sunny|rain) ∗ u(rain, leaveit)

+ P (rain) ∗ P (cloudy|rain) ∗ u(rain, takeit)

+ P (rain) ∗ P (rainy|rain) ∗ u(rain, leaveit)

When calculating an expected utility, we often need to enumerate all possible worlds.
In this case, there are two possibilities for weather, and three possibilities for forecast.
There are six possibilities in total.

First, we need to calculate the probability of each of the six scenarios. For the first
scenario, its probability is the probability of not raining (P (norain)) multiplied by the
probability of a ”sunny” format given ”norain” (P (sunny|norain)). The other cases
are similar.

Next, we multiply each term by our utility in that scenario. The utility is going to
depend on the actual weather condition and what we decide to do with the umbrella.
In this scenario, we take the umbrella when the forecast is ”cloudy”, and leave the
umbrella at home for the four other cases.
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The final step is to plug in all the numbers to figure out the utility, which is done here:

EU(π1) = P (norain) ∗ P (sunny|norain) ∗ u(norain, leaveit)

+ P (norain) ∗ P (cloudy|norain) ∗ u(norain, takeit)

+ P (norain) ∗ P (rainy|norain) ∗ u(norain, leaveit)

+ P (rain) ∗ P (sunny|rain) ∗ u(rain, leaveit)

+ P (rain) ∗ P (cloudy|rain) ∗ u(rain, takeit)

+ P (rain) ∗ P (rainy|rain) ∗ u(rain, leaveit)

= 0.7 ∗ 0.7 ∗ 100

+ 0.7 ∗ 0.2 ∗ 20

+ 0.7 ∗ 0.1 ∗ 100

+ 0.3 ∗ 0.15 ∗ 0

+ 0.3 ∗ 0.25 ∗ 70

+ 0.3 ∗ 0.6 ∗ 0

= 49 + 2.8 + 7 + 0 + 5.25 + 0

= 64.05

The expected utility of π1 is 64.05.

The utility by itself doesn’t really mean much, but it’s important when we compare the
expected utilities of different policies.

Problem: Consider the policy π2 below.

• take the umbrella if the forecast is rainy, and

• leave the umbrella at home otherwise

What is the expected utility of the policy π2?
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Solution: The following is the solution to this problem:

EU(π1) = P (norain) ∗ P (sunny|norain) ∗ u(norain, leaveit)

+ P (norain) ∗ P (cloudy|norain) ∗ u(norain, leaveit)

+ P (norain) ∗ P (rainy|norain) ∗ u(norain, takeit)

+ P (rain) ∗ P (sunny|rain) ∗ u(rain, leaveit)

+ P (rain) ∗ P (cloudy|rain) ∗ u(rain, leaveit)

+ P (rain) ∗ P (rainy|rain) ∗ u(rain, takeit)

= 0.7 ∗ 0.7 ∗ 100

+ 0.7 ∗ 0.2 ∗ 100

+ 0.7 ∗ 0.1 ∗ 20

+ 0.3 ∗ 0.15 ∗ 0

+ 0.3 ∗ 0.25 ∗ 0

+ 0.3 ∗ 0.6 ∗ 70

= 49 + 14 + 1.4 + 0 + 0 + 12.6

= 77

The expected utility of π2 is 77.

By comparison, policy π2 is better than policy π1. If we were to only choose between these
two policies, we would choose π2.

The calculation for the expected utilities of π1 and π2 are very similar to each other. In order
to solve the entire problem using this approach, we need to go thorough all eight possible
policies and calculate the expected utility for each policy, and then decide on the best one.
We are not going to go through all the other policies here because it would be too tedious,
but the calculations will be similar to what we did for π1 and π2.

2.2 Variable Elimination Algorithm for Decision Networks

As mentioned before, enumerating all the policies and calculating their expected utilities is a
bit tedious and inefficient because even for a small decision network, there could potentially
be a large number of possible policies. As such, we can use the variable elimination algorithm
to find the optimal policy and calculate the expected utility of this optimal policy.

Since the weather decision network is more complex than the mail pick-up robot network, we
need to modify the variable elimination algorithm slightly from before. The following is the
general form of the variable elimination algorithm which is going to work for any decision
network where we are able to totally order all of the decision nodes:

Variable Elimination Algorithm

1. Remove all variables that are not ancestors of the utility node.
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2. Create factors.

3. While there are decision nodes remaining,

(a) Sum out each random variable that is not a parent of a decision node.

(b) Find the optimal policy for the last decision node.

4. Return the optimal policies.

5. Calculate the expected utility of the optimal policy b summing out all remaining
random variables.

Step 1: We remove all the variables that are not ancestors of the utility node. If a variable
is not an ancestor of the utility node, it does not influence the utility. Since it is irrelevant
to our happiness and we can get rid of all such variables.

Step 2: We will create factors for chance nodes and for the utility node. We create one factor
for each chance node, similar to the variable elimination algorithm for Bayesian networks.
We also create a factor for the utility node. However, we won’t create factors for decision
nodes since we will choose their values during the algorithm execution.

Step 3: We will go through the remaining decision nodes, find the optimal policy for each
decision node, and eliminate them.

How is a decision node eliminated? While there are still decision nodes remaining, we go
through the entire network, find all random variables that are not parents of decision nodes,
and sum out all these random variables.

The reason for this is that when we’re trying to make a decision for a decision node, only
the parents of that decision node are relevant. All other chance nodes are not relevant for
that decision node. As long as a random variable is a parent of some decision node, it may
be relevant when deciding on that decision. As such, we can sum those random variables
that are not relevant out.

Once all the variables that are not parents of a decision node are summed out, we take
all of the decision nodes and think of them as being ordered from first to last. Given this
ordering in this iteration of the loop, we consider the last decision node. We eliminate that
last decision node by finding the optimal policy for that decision node.

In particular, finding the optimal policy of the last decision node will involve finding one
factor which contains that decision node and some of its parents. There should be a single
factor that contains that decision node with some of its parents, and we use that factor to
find the optimal policy for that decision node. Once we find this optimal policy, we eliminate
that factor by fixing the decision variable to be the optimal policy that we chose.

This loop is looped through as many times as needed depending on how many decision nodes
there are in the network. In every iteration of the loop, we eliminate the last decision node
in the sequence and once we eliminate a decision node, we may have more random variables
that are not parents of decision nodes. So we go through another iteration of the loop to
eliminate those those random variables.
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Figure 1: The Weather Decision Network

Once the optimal policies are determined for all decision nodes, we can simply take all of
the optimal policies and return them.

Finally, we can multiply all the final factors together and sum out all the random variables,
resulting in a single number that will be the expected utility of the optimal policy.

2.3 Solving the Weather Decision Network - Variable Elimination
Algorithm

Let’s now apply the variable elimination algorithm to the weather decision network. We
want to decide whether to take the umbrella with us or not based on the weather forecast.
The utility will be based on the actual weather condition and the umbrella decision. We will
go through the variable elimination algorithm step by step.

Step 1

The first step is removing all variables that are not ancestors of the utility node. There are
only three other variables besides the utility node and they are all ancestors of the utility
node, so there is nothing to be done in this step.

Step 2

The second step is to create factors.

• Looking at the original network diagram, there is the chance node Weather, so we’ll
create a factor for it called f1(Weather).

• Then, there is the chance node Forecast which has Weather as its parent, so we’ll create
a factor for it called f2(Weather, Forecast).

• Umbrella is a decision node, so no factor is needed for that. Finally, there is the utility
node which depends on Weather and Umbrella, so we create a third factor called
f3(Weather, Umbrella).

Step 3

The third step is to step into the loop which considers the decision nodes from last to first
and eliminates them one by one until there are no decision nodes remaining.

Step 3(a):
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f4(Weather, Forecast, Umbrella)
Weather Forecast Umbrella val
norain sunny takeit 9.8
norain sunny leaveit 49
norain cloudy takeit 2.8
norain cloudy leaveit 14
norain rainy takeit 1.4
norain rainy leaveit 7
rain sunny takeit 3.15
rain sunny leaveit 0
rain cloudy takeit 5.25
rain cloudy leaveit 0
rain rainy takeit 12.6
rain rainy leaveit 0

Figure 2: Factor f4

f5(Forecast, Umbrella)
Forecast Umbrella val
sunny takeit 12.95
sunny leaveit 49
cloudy takeit 8.05
cloudy leaveit 14
rainy takeit 14
rainy leaveit 7

Figure 3: Factor f5

To do this, we first need to sum out any random variable that is not a parent of any decision
node. Forecast is a parent of umbrella which is a decision node, so we should not sum it out.
However, Weather is not a parent of any decision node, so we should sum it out.

How do we sum out weather? We do this by looking at which factors contain the variable
Weather, multiply all these factors together to produce a new factor, and then sum out
Weather from this new factor. There are three factors that contain weather: f1, f2, and
f3. We multiply these factors together to product a factor f4(Weather, Forecast, Umbrella).
Then we sum out weather from f4 to get f5(Forecast, Umbrella).

The following is the result of calculating f4 and f5:

Thinking about this variable elimination process graphically, the summing out of Weather
from the network is like getting rid of the Weather node from the original network and re-
linking the rest of the nodes. This results in the single factor f5 which contains Forecast and
Umbrella, but also contains the effect of Weather ”blended” into it as well. This is shown
visually in the image below:
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The optimal policy for Umbrella
Forecast Umbrella
sunny leaveit
cloudy leaveit
rainy takeit

Figure 4: Optimal policy for Umbrella

Step 3(b)

The next step in the loop is finding the optimal policy for the last decision node. Since
umbrella is the only decision node in the network, we need to find the optimal policy for it.
In the general case, we may still have multiple factors left. Among these factors, we look for
a single factor which contains the decision node umbrella, plus a subset of its parents. Since
there’s only one factor left, f5, that’s the candidate.

We can verify that f5 is the candidate by looking for a few things. Firstly, it contains
Umbrella, the decision node we’re interested in. It also contains Forecast, the parent of
Umbrella. Therefore, it fits the general requirements.

Now that we have factor f5 as the candidate, we need to eliminate Umbrella. The way we
do this is to maximize the value in the factor by choosing a values for Umbrella for every
value assignment to its parents. In this case, for every value of Forecast, we choose a value
for Umbrella to maximize value.

Looking at the f5 table, when Forecast is sunny, the expected utility if we take an Umbrella
is 12.95 and the expected utility is 49 if we leave the Umbrella. Therefore, the best policy
in this case is to leave the umbrella. Similar logic is used for when the Forecast is cloudy or
rainy, and the result is the optimal policy for umbrella, put into table form:

In this case, we only take an umbrella if the forecast is rainy, and leave it at home otherwise.

For the weather decision network, umbrella is the only decision node, so once the optimal
policy for umbrella is found, we can stop if the purpose is just to find the optimal policy.
However, to show the entire variable elimination algorithm, we can keep going and apply
the algorithm to calculate the expected utility of the optimal policy.

Suppose there are more decision nodes that need taken care of. When we figure out the
optimal policy for umbrella, we also eliminate it from the factors being considered. Removing
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f6(Forecast)
Forecast val
sunny 49
cloudy 14
rainy 14

Figure 5: Factor f6

umbrella from f5 results in a new factor f6:

We can remove umbrella from this factor because it’s deterministic given forecast. There
is a deterministic way of figuring out what to do with umbrella, so given this policy, it
doesn’t influence utility in any way. Similar to how we eliminated the weather node from
the graphical representation, we can get rid of the umbrella node along with its corresponding
links:

In general, we may want to loop through the last two steps multiple times if there were
multiple decision nodes, but in this case, there is only one decision node, so we are done
with the third step in the algorithm.

Step 4:

In the fourth step, we simply return the optimal policy in Figure 4.

Step 5:

For the final step, we use the final remaining factors to calculate the expected utility. If there
were multiple factors left, we would want to multiply all the remaining factors together to
get the expected utility. In this case, however, there is only one factor left.

We ultimately end up with one remaining factor, and with this, we sum out all the remaining
random variables from this factor. In this case, we sum out forecast by take all the values
and adding them together, which ends up in an expected utility of 49 + 14 + 14 = 77 for the
optimal policy.

Representing this graphically, this is equivalent to getting rid of the Forecast node and the
link:
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Now we have the only utility node left which corresponds to the expected utility of 77 that
we calculated.

2.4 The Value of Perfect Info on Weather

Now, let’s ask a different question about the weather decision network. In the original
network, we use forecast as a noisy signal of weather, and we base our decision on this noisy
signal.

The new question to think about is what if we can observe weather directly? How much can
we increase the expected utility if we’re able to observe weather directly? We modify the
decision network we worked with before slightly by adding a directed edge from weather to
umbrella, since now, it can be observed directly:

The decision node umbrella now depends on forecast and weather. How does this effect the
utility? One would expect the utility to increase since we have better information than before.
We can calculate how much it increases by applying the variable elimination algorithm step
by step to solve this problem.

Step 1

The first step is to remove all the random variables that are not ancestors of the utility node.
All of the nodes in the graph are ancestors of the utility node, so similar to before, nothing
is done in this step.

Step 2

The second step is to define the initial factors. This step is exactly the same as be-
fore. The three factors that we define are for the weather node, the forecast node, and
the utility node. The three respective factors are f1(Weather), f2(Forecast, Weather), and
f3(Weather, Umbrella).

Notice that in the new decision network, umbrella has a new parent. However, the initial
factors didn’t change. This is because we didn’t define a factor for umbrella, since we don’t
define factors for decision variables when using the variable elimination algorithm.
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Step 3

The third step is entering the loop.

Step 3(a)

The first step in the loop is to sum out all the random variables that are not a parent
of any decision node. Looking at the new diagram, there is still only one decision node:
umbrella. There are two chance nodes in the diagram: weather and forecast. Both are
parents of umbrella, so there are no random variables that are not parents of a decision
node. Therefore, there is nothing to be done at this step.

Step 3(b)

The second step in the loop is to find the optimal policy for umbrella. To do this, we look
for a factor that contains umbrella and a subset of umbrella’s parents.

The factor we’re looking for here is f3. It contains umbrella, and it contains one parent
of umbrella which is Weather. With this factor, we need to determine the best policy for
umbrella. Below is f3(Weather, Umbrella):

f3(Weather, Umbrella)
Weather Umbrella u(Weather, Umbrella)
norain takeit 20
norain leaveit 100
rain takeit 70
rain leaveit 0

When the weather is norain, the best thing to do is leave the umbrella at home, which
achieves a utility of 100. When the weather is rain, the best thing to do is take the umbrella,
which achieves a utility of 70. From this, we produce a new factor f4(Weather) which is the
result of eliminating Umbrella from f3(Weather, Umbrella):

f4(Weather)
Weather value
norain 100
rain 70

At this point, if this is the solution we were looking for, then we’re done. However, to apply
the entire variable elimination algorithm, we keep going until the end where we calculate
the expected utility of the optimal policy. Remember that the question we want to answer
is how much better can we do by having direct information about weather.

Since there was only one decision node in the network, we are done with the third step in
the algorithm

Step 4

In the fourth step, we simply return the optimal policies. In this case, we just return
f4(Weather).
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Step 5

The final step of the algorithm is to sum out all the remaining variables to get the ex-
pected utility of the optimal policy. At this point, there are three factors left: f1(Weather),
f2(Forecast, Weather), and the new factor f4(Weather). These are shown below:

f1(Weather)
Weather value
rain 0.3
norain 0.7

f2(Forecast, Weather)
Weather Forecast P (Forecast|Weather)
norain sunny 0.7
norain cloudy 0.2
norain rainy 0.1
rain sunny 0.15
rain cloudy 0.25
rain rainy 0.6

f4(Weather)
Weather value
norain 100
rain 70

The remaining variables in the remaining factors are weather and forecast. Let’s sum out
forecast first since it only appears in one factor. We take f2(Forecast, Weather) and sum
out Forecast to get f5(Weather):

f5(Weather)
Weather value
norain 1
rain 1

When we sum out forecast, we add up all the probabilities, and they all sum up to 1 for each
values of weather. There is a reason for this which is explained a little later.

Now, we are left with factors f1(Weather), f4(Weather), and f5(Weather):

f1(Weather)
Weather value
rain 0.3
norain 0.7

f4(Weather)
Weather value
norain 100
rain 70

f5(Weather)
Weather value
norain 1
rain 1

Since the only variable left is weather, we need to multiply all the factors together to sum it
out. Multiplying all three factors together, we get the final f6(Weather) with a value of 21
if the weather is rain, and 70 if the weather is norain:

f6(Weather)
Weather value
rain 21
norain 70

Summing out weather, we get the final value 21 + 70 = 91 for the expected utility of the
optimal policy for this decision network.
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This is the end of the variable elimination algorithm for this network.

Now, let’s compare the expected utilities for the original decision network, and the network
with direct knowledge of weather. The expected utility of the original decision network was
77. The expected utility of the new network we just calculated is 91.

The difference between these two expected utilities is what is called the value of getting
perfect information on weather. In this case, this value is 91− 77 = 14.

Why would we want to get this value? In the real world, when we have a random variable,
it’s something that we don’t have control over. However, we can often perform tests or do
additional things to get better information about a particular random variable. We can use
this kind of analysis to figure out what effect this better information has.

There is something interesting about this decision network when comparing it to the original
decision network. In the original decision network, we figure out the optimal policy for
umbrella based on forecast. For the new decision network, umbrella technically has two
parents: weather and forecast.

However, for the optimal policy for the new decision network where we directly know what
weather is, it only depends on weather. It’s as if the edge between forecast and umbrella
doesn’t exist. Why is this?

You may have thought of this before, but once we can directly observe weather, we don’t
need forecast anymore. It’s not useful. Forecast is a noisy signal that does not give us any
additional information, so the optimal policy does not use it.

There are two places in the algorithm where we can see this happening.

The first place is when we’re finding the optimal policy for umbrella, where utility does not
directly depend on forecast.

The second place is when we sum out forecast from factor f2(Weather, Forecast) to produce
f5(Weather) and we get values of 1 for both rain and norain. This happens when a variable
is considered that is irrelevant to whatever we’re trying to solve. In this case, it’s the optimal
policy. Since this factor only contains 1’s, it doesn’t effect the final result in any way after
performing the multiplication to sum out weather.

At this point, you should be able to figure out the value of getting perfect information of a
particular random variable by assuming that this information is directly available, calculating
the expected utility in this scenario, and then calculating the improvement in expected utility.

3 Applying the Variable Elimination Algorithm on a

Medical Diagnosis Scenario

So far, we have only seen examples dealing with networks with one decision node. In the
following example, we’re going to look at the application of the variable elimination algorithm
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on a network with multiple decision nodes. This is to illustrate the full extent of the variable
elimination algorithm, where we consider the decision nodes in reverse order.

In this example, we won’t use any numbers but will walk through the steps of the algorithm,
including the operations that will need to be performed at each step. The network we’re
going to be working with relates to a general medical diagnosis scenario, and is represented
graphically below:

A patient has some disease. Given this disease, the patient is going to show a certain symp-
tom. The doctor cannot observe the disease directly, but they could observe the symptom.
Given the symptom, the doctor would decide on what kind of test to perform. This is the
first decision node in the network.

Given the test performed, and given the actual disease that the patient has, the test will
produce some test result. The doctor would decide on what treatment to prescribe, which is
based on the symptoms, the test performed, and the test result. This is the second decision
node in the network.

The treatment will cause some outcome to occur, which is dependent on the treatment, and
the actual disease that the patient has. Once there’s an outcome, the patient has some
utility in the scenario. The utility is based on the outcome, but is also based on the test
performed, since performing the test will incur some costs which will have a negative impact
on the utility for the patient.

This is a fairly generic medical diagnosis scenario with two decisions: the doctor must choose
the test, and choose the treatment. We can apply the variable elimination algorithm step
by step.
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3.1 Step 1 (Remove variables that do not affect the utility node)

The first step is to remove any variable that is not an ancestor of the utility node. This
network is designed in such a way that the utility node is the last one, so every node is an
ancestor of the utility node. Nothing is to be done at this step.

3.2 Step 2 (Define factors)

The second step is to define a factor for each conditional probability distribution, and for
the utility node. We start with the five factors shown below:

There are five starting factors.

The first factor is for disease, and since it doesn’t have a parent, disease is the only variable
in that factor: f1(D).

The second factor is for symptom which has disease as its parent: f2(S,D).

The third factor is for test result which depends on test and disease: f3(TR, T,D).

The fourth factor is for outcome which has disease and treatment as parents: f4(O,D, Tr).
TR is used to represent test result, and Tr is used to represent treatment in this notation.

The final factor is for the utility node which depends on outcome and test: f5(O, T ).

3.3 Step 3 (Find the optimal policy of each decision node)

The third step is to enter the loop. Since we iterate through the loop multiple times in this
example, we label each loop at Loop 1, Loop 2,... to see which step we’re in.
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Loop 1:

Step 3 (a):

The first step in the loop is to sum out each random variable that is not a parent of a decision
node.

Symptom is a parent node of test, which is a decision node, and test result is a parent node
of treatment, which is also a decision node. There are two random variables, disease and
outcome, that are not parent nodes of a decision node, so we must sum these two variables
out.

Let’s sum out outcome first. How do we do this?

We need to look for factors that contain outcome. There are two factors that contain
outcome: f4(O,D, Tr) and f5(O, T ). We multiply these two factors to get

f4(O,D, Tr)× f5(O, T ) = f6(O,D, Tr, T ).

Then we sum out outcome from f6 to get f7(D,Tr, T ). The following is the updated decision
network after summing out outcome:

The effect of summing out outcome from the network is simply removing the node, but once
it’s removed, other nodes that are connected to it will be connected with each other. For
the resulting network, outcome used to be connected to treatment, disease, and utility. In
the resulting network, utility is directly connected to disease and treatment.

Next, we sum out disease. How do we do this?
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All four factors contain disease, so we need to multiply all four factors to get

f1(D)× f2(S,D)× f3(TR, T,D)× f7(D,Tr, T ) = f8(D,S, TR, T, Tr)

Then we sum out disease from f8 to get f9(S, TR, T, Tr). The following is the updated
decision network after summing out disease:

Disease used to be connected to test result and utility. Now, test result is directly connected
to utility.

At this point, we have summed out all the variables that are not parent nodes of a decision
node, so we can move on to the next step.

Step 3(b):

For the second step in the loop, we must find the optimal policy for the last decision node.

How do we determine the ordering of the decision nodes? The earlier decision node test is a
parent of the later decision node treatment, so this parent-child relationship is the ordering
we follow. The parent node test is first in the ordering, and the child node treatment is last
in the ordering.

Therefore, we need to find the optimal policy for treatment. There is only the factor
f9(S, TR, T, Tr) in the network at this point. f9 contains some of the parents of treatment
and treatment itself, so it’s the factor we will deal with.

If we were calculating this, we would have a table for f9 with columns for symptom, test
result, test, and treatment, and a final column for expected utility. Given this table, we would
find the optimal policy for treatment by choosing the value for treatment that maximizes
expected utility for each combination of symptom, test, and test result. This will result in a
new factor f10(S, TR, T ).
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We have essentially eliminated the treatment node from the network. The following is the
updated decision network after finding the optimal policy for treatment:

The treatment node was originally connected to every other node, so once it’s eliminated,
it will result in the other nodes being connected to each other. Those nodes were already
connected to each other, so no new connections were added.

This is the end of the first iteration of the loop. We’ve taken care of one decision node. Since
there is still a decision node remaining, we must go through another iteration of the loop.

Loop 2:

Step 3(a):

The first step in the loop is to sum out each random variable that is not a parent of a decision
node.

Now that treatment has been eliminated, test result is no longer a parent node of any decision
node, so we must eliminate it. Since there’s only one factor, there is no need to perform
multiplications. We sum out test result from f10 to get f11(S, T ). The following is the
updated decision network after summing out test result:
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At this point, there are no more random variables that are not parent nodes of a decision
node, so we can move on to the next step.

Step 3(b):

For the second step in the loop, we must find the optimal policy for the last decision node.

In this case, there’s only one decision node left, so we find the optimal policy for the decision
node Test. There is only the factor f11(Symptom, Test) which contains Test itself, and its
only parent Symptom.

Again, we imagine this factor as a table with two columns for symptom and test, and an
additional column for expected utility. Given this table, we need to choose the value for test
that maximizes the expected utility for each value of symptom. This will result in a new
factor f12(Symptom).

We also eliminate the test node from the network. The following is the updated decision
network after finding the optimal policy for test:

Figure 6: The optimal policy for Test

At this point, there are no more decision nodes left in the network, so we can exit the loop.

3.4 Step 4: Return the optimal policies

In the fourth step, we simply return the optimal policies.
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3.5 Step 5: Compute the expected utility of the optimal policy

The final step of the algorithm is to sum out all the remaining variables to get the expected
utility of the optimal policy. Since there is only one factor left, we take f12(S) and sum out
symptom to get one number representing the expected utility of the optimal policy. After
summing out symptom, the only node remaining is the utility node, which means that we’ve
completed the variable elimination algorithm.
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