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CS 486/686 Lecture 15

1 Learning Goals

By the end of the lecture, you should be able to

• Calculate the smoothing probability for a time step in a hidden Markov model.

• Describe the justification for a step in the derivation of the smoothing formulas.

• Describe the forward-backward algorithm

2 The Smoothing Task

Let’s recall the definition of the smoothing task. Let the first time step be 0. Suppose
that today is day t-1. Smoothing asks the following question: Given the observations from
day 0 to t-1, what is the probability that I am in a particular state on dad k in the past?
Mathematically, what is the probability of Sk given o0:(t−1)?

P (Sk|o0:t−1), 0 ≤ k ≤ t− 1

Smoothing is useful since new observations can help us derive more accurate estimates of
the states in the past.

Similar to filtering, smoothing is not calculating a single probability. Since Sk can be true
or false. We are computing a distribution containing two probabilities.

2.1 The Smoothing Formulas

To calculate a smoothed probability, we will make use of forward and backward recursion.

Example:

P (Sk|o0:t−1)

= αP (Sk|o0:k)P (o(k+1):(t−1)|Sk)

= α f0:k b(k+1):(t−1)

First, we’ll take the probability and write it as a normalized product of two probabilities.
Don’t worry about understanding the formula now. I’ll explain it a bit later.

The first probability is equivalent to the filtering message for day k, which is f0:k. We already
know how to calculate it using forward recursion.

We will calculate the second probability using backward recursion. To do this, let’s define
the second probability as a message for b for backward recursion. The subscript (k+1) to
(t-1) indicates the sequence of observations in the probability. Backward recursion passes
the message b from time step k = t - 1 back to k = 0.

Let’s look at the formulas for backward recursion.
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Example: Base case:

bt:(t−1) = ~1. (1)

For k = t-1, we have the base case. In this case, the message is bt:t−1. This message is equal
to P (ot:t−1|St−1. The sequence in the subscript doesn’t make much sense. How can we have a
sequence of time steps starting from t and ending at t-1? This is impossible. Because of this,
we interpret this sequence of time steps as an empty sequence. Given an empty sequence of
observations, we define the probabilities to be 1’s. This is why the base case is a vector of
1’s.

Example: Recursive case:

b(k+1):(t−1) =
∑
sk+1

P (ok+1|sk+1) ∗ b(k+2):(t−1) ∗ P (sk+1|Sk), or (2)

P (o(k+1):(t−1)|Sk) =
∑
sk+1

P (ok+1|sk+1) ∗ P (o(k+2):(t−1)|sk+1) ∗ P (sk+1|Sk). (3)

If k is an integer from 0 to t-2, we have the recursive case.

We are given the message b(k+2):(t−1). We want to calculate the message b(k+1):(t−1). Note
that we are going backward in time, from day k+2 to day k+1.

The message is a summation. Each term in the summation is a product of three terms. The
first term comes from the sensor model. The last term comes from the transition model.
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3 Smoothing Calculations

Let’s go through some examples of calculating smoothed probabilities.

Problem:
Consider the umbrella story. Assume that 3 days have passed and the director carried
an umbrella every day. We want to calculate the probability that it rained on day 0
(P (S0|o0:2)) and the probability that it rained on day 1 (P (S1|o0:2)).
The umbrella model is given below.

P (s0) = 0.5

P (st|st−1) = 0.7
P (st|¬st−1) = 0.3

P (ot|st) = 0.9
P (ot|¬st) = 0.2

St−2 St−1 St St+1

Ot−2 Ot−1 Ot Ot+1

Solution:

Let’s calculate the probability that it rained on day 1 first.

To use the smoothing formula, we should figure out the values of k and t. By comparing
our probability with the probability in the formula, we can see that k = 1 and t = 3.
We have gathered 3 observations and we are looking to estimate the state on day 1.

Next, let’s write the probability as a normalized product of two messages.

P (S1|o0:2)
= α f0:1 b2:2

The first message is f0:1 - the probability of the state on day 1 given the observations
from the first two days. We already calculated this using forward recursion.

0:0 = 〈0.883, 0.117〉. (4)

The second message is b2:2. We will calculate this message using backward recursion.
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Problem: Next, let’s calculate b2:2 = P (o2:2|S1) using backward recursion.

Solution: Let’s calculate b1:1. Since the sequence in the subscript is not empty, so
this is not the base case. We need to apply the formula for the recursive case. Let’s
take the recursive formula and plug in k = 1 and t = 3.

b2:2 = P (o2:2|S1)

=
∑
s2

P (o2|s2) ∗ b3:2 ∗ P (s2|S1)

Next, let’s rewrite the middle term from the message form back to a conditional
probability. Writing the term as a probability makes it easier to expand the summation
later.

=
∑
s2

P (o2|s2) ∗ b3:2 ∗ P (s2|S1)

=
∑
s2

P (o2|s2) ∗ P (o3:2|s2) ∗ P (s2|S1)

Each term in the summation is a product of three probabilities. Recall that the
middle probability is a b message from the previous step of the backward recursion.
The sequence of observations in this b message is empty since it starts at day 3 and
ends at day 2. This is the base case and we have defined each probability in the tuple
to be 1.

Next, let’s look at the last term in the product. S1 could be true or false. Let’s write
the last term as a tuple of two probabilities, one for s1 = t and the other one for
s1 = f .

=
∑
s2

P (o2|s2) ∗ P (o3:2|s2) ∗ P (s2|S1)

=
∑
s2

P (o2|s2) ∗ P (o3:2|s2) ∗ 〈P (s2|s1), P (s2|¬s1)〉

Finally, let’s write the sum over S2 explicitly into two terms, one for s2 = t and the
other one for s2 = f

=
∑
s2

P (o2|s2) ∗ P (o3:2|s2) ∗ 〈P (s2|s1), P (s2|¬s1)〉

=

(
P (o2|s2) ∗ P (o3:2|s2) ∗ 〈P (s2|s1), P (s2|¬s1)〉

+ P (o2|¬s2) ∗ P (o3:2|¬s2) ∗ 〈P (¬s2|s1), P (¬s2|¬s1)〉
)
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At this point, the formula contains all small letters. We are ready to plug in the
numbers.

b2:2 = P (o2:2|S1)

=

(
P (o2|s2) ∗ P (o3:2|s2) ∗ 〈P (s2|s1), P (s2|¬s1)〉

+ P (o2|¬s2) ∗ P (o3:2|¬s2) ∗ 〈P (¬s2|s1), P (¬s2|¬s1)〉
)

=

(
0.9 ∗ 1 ∗ 〈0.7, 0.3〉+ 0.2 ∗ 1 ∗ 〈0.3, 0.7〉

)
= (0.9 ∗ 〈0.7, 0.3〉+ 0.2 ∗ 〈0.3, 0.7〉)
= (〈0.63, 0.27〉+ 〈0.06, 0.14〉)
= 〈0.69, 0.41〉

The first term in each product comes from the sensor model. The last term in each
product comes from the transition model. The middle term in each product is the b
value in the base case. So we have a 1 in each product.

When we multiply a number with a tuple, we multiply the number with every proba-
bility in the tuple.

Problem: Calculate P (S1|o0:2).

Solution: We have calculated the message b2:2 using backward recursion. We are
now ready to derive the smoothed probability.

Recall the smoothing formula. The smoothed probability is a normalized product of
two messages, one from forward recursion and one from backward recursion.

P (S1|o0:2)
= αP (S1|o0:1) ∗ P (o2:2|S1)

= α f0:1 ∗ b2:2
= α〈0.883, 0.117〉 ∗ 〈0.69, 0.41〉
= α〈0.6093, 0.0480〉
= 〈0.927, 0.073〉

We need to multiply the forward recursion message and the backward recursion mes-
sage together. This is an element-wises multiplication again. The final step is to
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normalize the product.

Here is our final answer. Given that the director brought the umbrella on both days,
the probability that it rained on day 0 is quite high, around 88%.

Problem: Next, let’s calculate P (S0|o0:2).

Solution:

We can use the same procedure to calculate the probability that it rained on day 0
given the three observations.

First, we compare the probability and our formula to determine that k = 0 and t = 3.

Similar to the previous example, we’ve already calculated the f message through for-
ward recursion. We need to calculate the b message through backward recursion and
then calculate a normalized product of the two messages.

First, we will calculate the message b1:2 using backward recursion. In each product,
the middle term corresponds to the component in the previous message b2:2. The main
difference between this smoothing example and the previous smoothing example is
that the middle term in each product is not 1 since it is not the base case of backward
recursion.

b1:2 = P (o1:2|S0)

= (P (o1|s1) ∗ P (o2:2|s1) ∗ 〈P (s1|s0), P (s1|¬s0)〉
+ P (o1|¬s1) ∗ P (o2:2|¬s1) ∗ 〈P (¬s1|s0), P (¬s1|¬s0)〉)

= (0.9 ∗ 0.69 ∗ 〈0.7, 0.3〉+ 0.2 ∗ 0.41 ∗ 〈0.3, 0.7〉)
= 〈0.4593, 0.2437〉

Next, we will calculate the smoothed probability by multiplying the two messages
together through an element-wise multiplication and normalizing the product.

P (S0|o0:2)
= α f0:0 ∗ b1:2
= α〈0.818, 0.182〉 ∗ 〈0.4593, 0.2437〉
= 〈0.894, 0.106〉
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4 Smoothing Derivations

The derivations for the smoothing formulas look even longer than those for the filtering for-
mulas. Don’t worry about understanding all the formulas now. I will explain the derivation
step by step. However, once we break it down and look at it step by step, you will see that
each step can be justified by one of the five reasons that I discussed previously.

For each step, please try to choose a justification yourself first. You will have five options as
before: Bayes’ rule, re-writing the expression, the chain rule or the product rule, the Markov
assumption, and the sum rule.

4.1 Derivations Part 1

How can we derive the formula for P (Sk|o0:(t−1)), 0 ≤ k < t− 1?

P (Sk|o0:(t−1))

= P (Sk|o(k+1):(t−1) ∧ o0:k)

= αP (Sk|o0:k)P (o(k+1):(t−1)|Sk ∧ o0:k)

= αP (Sk|o0:k)P (o(k+1):(t−1)|Sk)

= αf0:kb(k+1):(t−1)

Problem:
Step 1: What is the justification for the step below?

P (Sk|o0:(t−1))

= P (Sk|o(k+1):(t−1) ∧ o0:k)

(A) Bayes’ rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Solution: The correct answer is (B), re-writing the expression. We split the sequence
of observations into two parts. The second term contains the observations up to k.
The first term contains the observations from k+1 to the end.
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If you imagine that you are in day k, then the two sequences correspond to past
observations from the start to day k, and future observations from day k+1 to the
end.

Problem:
Step 2: What is the justification for the step below?

= P (Sk|o(k+1):(t−1) ∧ o0:k)

= αP (Sk|o0:k)P (o(k+1):(t−1)|Sk ∧ o0:k)

(A) Bayes’ rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Solution: The correct answer is (A) Bayes’s rule. It’s easier to see this when you
cross out o0:k since it appears in all three terms.

We switched the places of Sk and o(k+1):(t−1) using Bayes’ rule. This is convenient since
the observation sequence comes after the state on day k. It is natural to think about
how the state on day k affects the observations in its future from day k+1 to the end.

By the way, crossing out the last term doesn’t mean that we can cancel it. I want you
to disregard the last term so that it is easier to see the pattern in the remaining parts.
This step is a version of the Bayes’ rule where every term conditions on the same term.
Here is a practice problem for you. Try proving the general equation yourself. You
should be able to prove it with the basic rules of probability.

P (A|B ∧ C) = αP (A|C)P (B|A ∧ C)

Problem:
Step 3: What is the justification for the step below?

= αP (Sk|o0:k)P (o(k+1):(t−1)|Sk ∧ o0:k)

= αP (Sk|o0:k)P (o(k+1):(t−1)|Sk)

(A) Bayes’ rule
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(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Solution: The correct answer is (D) The Markov assumption. The step removes o0:k
from the second term.

The Markov assumption is basically a conditional independence relationship. In this
case, given Sk, the state on day k, the future observations are independent of the
past observations. That is, any observation up to day k is independent of any other
observation from day k+1 onward, given the state Sk.

You can verify this relationship by applying d-separation on the Bayesian network.
Suppose that we are in day k right now. The path between any past observation
and any future observation must go through Sk. If we are considering Ok, then the
two red arrows are both pointing away from Sk. If we are considering any other past
observation, the two orange arrows are pointing in the same direction. Either way, if
we observe Sk, it is as if we are cutting the chain at Sk, making the past observations
independent of the future observations.
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4.2 Derivations Part 2

Let’s look at the second part of the derivations.

P (o(k+1):(t−1)|Sk)

=
∑
s(k+1)

P (o(k+1):(t−1) ∧ s(k+1)|Sk) (5)

=
∑
s(k+1)

P (o(k+1):(t−1)|s(k+1) ∧ Sk) ∗ P (s(k+1)|Sk) (6)

=
∑
s(k+1)

P (o(k+1):(t−1)|s(k+1)) ∗ P (s(k+1)|Sk) (7)

=
∑
s(k+1)

P (o(k+1) ∧ o(k+2):(t−1)|s(k+1)) ∗ P (s(k+1)|Sk) (8)

=
∑
s(k+1)

P (o(k+1)|s(k+1)) ∗ P (o(k+2):(t−1)|s(k+1)) ∗ P (s(k+1)|Sk) (9)

In these steps, we derived the recursive formula for backward recursion. We are going
backward in time. Given the probability of an observation sequence starting on day k+2,
we can calculate the probability of an observation sequence starting on day k+1.

Problem:
Step 1: What is the justification for the step below?

P (o(k+1):(t−1)|Sk)

=
∑
s(k+1)

P (o(k+1):(t−1) ∧ s(k+1)|Sk)

(A) Bayes’ rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Solution: The correct answer is (E) The sum rule. We used the sum rule to introduce
sk+1. Introducing Sk+1 is convenient since it is a bridge between the state on day k
and the observations from day k+1 onward.
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Problem:
Step 2: What is the justification for the step below?

=
∑
s(k+1)

P (o(k+1):(t−1) ∧ s(k+1)|Sk)

=
∑
s(k+1)

P (o(k+1):(t−1)|s(k+1) ∧ Sk)P (s(k+1)|Sk)

(A) Bayes’ rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Solution: The correct answer is (C) The chain rule or the product rule. This is
easier to see if we cross out the last variable Sk in every term. We used the product
rule to write the probability as a product of two probabilities.

Problem:
Step 3: What is the justification for the step below?

=
∑
s(k+1)

P (o(k+1):(t−1)|s(k+1) ∧ Sk)P (s(k+1)|Sk)

=
∑
s(k+1)

P (o(k+1):(t−1)|s(k+1))P (s(k+1)|Sk)
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(A) Bayes’ rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Solution: The correct answer is (D) The Markov assumption. This step removes
the value Sk from the first term.

This is another conditional independence relationship. Given the state on day k+1,
Sk+1, all the future observations are independent of the past state on day k, Sk.

You can verify this by applying d-separation on the Bayesian network. The path
between Sk and any future observation has to go through Sk+1. Whether we are
considering the observation on k+1 or any observation after that, the two arrows both
point in the same direction. Therefore, if we observe Sk+1, it is as if we cut the chain
at Sk+1, making the state on day k, Sk, independent of any future observation.

Problem:
Step 4: What is the justification for the step below?

=
∑
s(k+1)

P (o(k+1):(t−1)|s(k+1)) ∗ P (s(k+1)|Sk)

=
∑
s(k+1)

P (o(k+1) ∧ o(k+2):(t−1)|s(k+1)) ∗ P (s(k+1)|Sk)
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(A) Bayes’ rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Solution: The correct answer is (B), re-writing the expression.

We split the sequence of observations from day k+1 to the end into two parts. The
first term contains the observation on day k+1 only. The second term contains the
observations from day k+2 to the end.

Problem:
Step 5: What is the justification for the step below?

=
∑
s(k+1)

P (o(k+1) ∧ o(k+2):(t−1)|s(k+1)) ∗ P (s(k+1)|Sk)

=
∑
s(k+1)

P (o(k+1)|s(k+1)) ∗ P (o(k+2):(t−1)|s(k+1)) ∗ P (s(k+1)|Sk)

(A) Bayes’ rule
(B) Re-writing the expression
(C) The chain/product rule
(D) The Markov assumption
(E) The sum rule

Solution: The correct answer is (D) The Markov assumption.

This is another conditional independence relationship. Given the state on day k+1,
Sk+1, the observation on day k+1, Ok+1 is independent of all the future observations
from day k+2 to the end.
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You can verify this by applying d-separation on the Bayesian network. The path
between Ok+1 and any future observation has to go through Sk+1. The two arrows
are pointing away from Sk+1. If we observe Sk+1, it is as if we cut the chain at Sk+1,
making the observation on day k+1, Ok+1, independent of any future observation.
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5 The Forward-Backward Algorithm

Now that we understood forward recursion and backward recursion, let’s put them together
in the forward-backward algorithm. I’ll explain the algorithm using a hidden Markov model
having 4 time steps. The algorithm works for a hidden Markov model with any finite number
of time steps.

The purpose of the forward-backward algorithm is to calculate the smoothed probability for
each time step. For our model, we want to calculate these four probabilities.

If we treat this model as a generic Bayesian network, we have to calculate each of the
four probabilities separately, for example, by using the variable elimination algorithm. This
approach is inefficient since there is no way for us to re-use any intermediate calculation
results. For every probability, we have to start the process from scratch.

The forward-backward algorithm allows us to calculate the probabilities more efficiently
through two passes through the network. Let’s take a look.

b1:3 b2:3 b3:3 b4:3
f0:0 f0:1 f0:2 f0:3

S0 S1 S2 S3

O0 O1 O2 O3

P (S0|o0:3) = αf0:0b1:3 (10)

P (S1|o0:3) = αf0:1b2:3 (11)

P (S2|o0:3) = αf0:2b3:3 (12)

P (S3|o0:3) = αf0:3b4:3 (13)

We will first perform a forward pass using forward recursion. Start from time 0 and go
forward in time. At each time step k, calculate the message f0:k and store the value. After
the forward pass, we have four values from f0:0 to f0:3.

Next, we will perform a backward pass using backward recursion. Start from the last time
step and go backward in time. At each time step k, we will calculate the message b(k+1):(t−1).
Then, we can combine the stored message f and the message b to derive the smoothed
probability at each time step.
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