
CS 486/686 Lecture 20 Extending Decision Trees 1

1 Extending Decision Trees

• Real-valued features

• Non-binary class variable

• Noise and overfitting

1.1 Non-binary class variable

So far, the class variable is binary (Tennis is Yes or No). What if there are more than two classes?
Suppose class is in c1, . . . , cl.

The modified ID3 algorithm:

Algorithm 1 ID3 Algorithm (Features, Examples)
1: If all examples belong to the same class i, return a leaf node with decision i.
2: If no features left, return a leaf node with the majority decision of the examples.
3: If no examples left, return a leaf node with the majority decision of the examples in the parent node.
4: else
5: choose feature f with the maximum information gain
6: for each value v of feature f do
7: add arc with label v
8: add subtree ID3(F − f, s ∈ S|f(s) = v)
9: end for

Calculation of information gain:

Consider feature A with ci examples in class i, i = 1, . . . , l. For j = 1, . . . , k, if A takes value vj,
then there are cji examples in class i.

Gain(A) (1)

= I

(
c1

c1 + · · ·+ cl
, . . . ,

cl
c1 + · · ·+ cl

)
(2)

−
k∑

j=1

cj1 + · · ·+ cjl
cj1 + · · ·+ cjl

I

(
cj1

cj1 + · · ·+ cjl
, . . . ,

cjl
cj1 + · · ·+ cjl

)
(3)

(CQ)



CS 486/686 Lecture 20 Extending Decision Trees 2

Suppose that we are classifying examples into three classes. Before testing feature X, there are 3
examples in class c1, 5 examples in class c2, and 2 examples in class c3. Feature X has two values
a and b. When X = a, there are 1 examples in class c1, 5 examples in class c2, and 0 examples in
class c3. When X = b, there are 2 examples in class c1, 0 examples in class c2, and 2 examples in
class c3.

What is the information gain for testing feature X at this node?

I(3/10, 5/10, 2/10) = 1.485

6/10 ∗ I(1/6, 5/6, 0/6) + 4/10 ∗ I(2/4, 0/4, 2/4) = 6/10 ∗ 0.65 + 4/10 ∗ 1 = 0.79

Information gain is 1.485− 0.79 = 0.695.

1.2 Real-valued features

Real-world problems often have real-valued features.

For example, Jeeves could have recorded the temperature as a real-valued feature.

Day Outlook Temp Humidity Wind Tennis?
1 Sunny 29.4 High Weak No
2 Sunny 26.6 High Strong No
3 Overcast 28.3 High Weak Yes
4 Rain 21.1 High Weak Yes
5 Rain 20.0 Normal Weak Yes
6 Rain 18.3 Normal Strong No
7 Overcast 17.7 Normal Strong Yes
8 Sunny 22.2 High Weak No
9 Sunny 20.6 Normal Weak Yes
10 Rain 23.9 Normal Weak Yes
11 Sunny 23.9 Normal Strong Yes
12 Overcast 22.2 High Strong Yes
13 Overcast 27.2 Normal Weak Yes
14 Rain 21.7 High Strong No

How should we deal with real-valued features?

Solution 1: Discretize the values.

• Temp < 20.8 –> Cool



CS 486/686 Lecture 20 Extending Decision Trees 3

• 20.8 ≤ Temp < 25.0 –> Mild

• 25.0 ≤ Temp –> Hot

Advantage is that this is easy to do. Disadvantage is that we lose valuation information. What if
the discretization we pick makes the decision tree much more complicated?

Solution 2: Dynamically choose a split point c for a real-valued feature

Split a feature f into f < c and f ≥ c.

How should we choose the split point c?

1. Sort the instances according to the real-valued feature

2. Possible split points are the values that are midway between two values that differ in their
classification.

(a) Suppose that the feature changes its value from X and Y . Follow the steps below to
determine whether we should consider (X + Y )/2 as a possible split point.

(b) For all the data points where the feature takes the value X, gather all the labels into
the set LX .
For all the data points where the feature takes the value Y , gather all the labels into
the set LY .

(c) If there exists a label a ∈ LX and a label b ∈ LY such that a ̸= b, then we will consider
(X + Y )/2 as a possible split point.

3. Determine the information gain for each possible split point and choose the split point with
the largest gain.

First, let’s sort the data set according to the values of Temp. The sorted data set is below.



CS 486/686 Lecture 20 Extending Decision Trees 4

Day Outlook Temp Humidity Wind Tennis?
7 Overcast 17.7 Normal Strong Yes
6 Rain 18.3 Normal Strong No
5 Rain 20.0 Normal Weak Yes
9 Sunny 20.6 Normal Weak Yes
4 Rain 21.1 High Weak Yes
14 Rain 21.7 High Strong No
8 Sunny 22.2 High Weak No
12 Overcast 22.2 High Strong Yes
10 Rain 23.9 Normal Weak Yes
11 Sunny 23.9 Normal Strong Yes
2 Sunny 26.6 High Strong No
13 Overcast 27.2 Normal Weak Yes
3 Overcast 28.3 High Weak Yes
1 Sunny 29.4 High Weak No

Whenever the value of Temp changes in its sorted order, we have a possible split point. For
example, here are a few possible split points.

• (17.7 + 18.3) / 2 = 18

• (22.2 + 23.9) / 2 = 23.05

We could choose to test all such midway values as the split points. However, the procedure
described above tries to go through fewer split point values by only choosing split points for which
the two values differ in their classification. Here are a few examples:

• The classification for 17.7 is Yes, whereas the classification for 18.3 is No. Thus, we will
consider (17.7 + 18.3) / 2 = 18 as a possible split point.

• The classification for 20.6 and the classification for 21.1 are both Yes. Therefore, we will
NOT consider the midway value between these two as a possible split point.

• The classification for 21.7 is No, whereas the classification for the 2 data points with 22.2
are Yes, and No. In this case, we will consider (21.7 + 22.2) / 2 = 21.95 as a possible split
point (because No for 21.7 is different from Yes for 22.2.)

• The classification for 2 data points with 22.2 are No and Yes, whereas the classification for
the two data points with 23.9 are both Yes. We will consider (22.2 + 23.9) / 2 = 23.05 as a
possible split point (because No for 22.2 is different from Yes for 23.9.)

Following the procedure described above, you should derive 8 possible split points.

Here is an example for calculating the information gain for the split point c = 21.7+22.2
2

= 21.95.



CS 486/686 Lecture 20 Extending Decision Trees 5

• Temp: +: 3, 4, 5, 7, 9, 10, 11, 12, 13. -: 1, 2, 6, 8, 14.

• Temp < 21.95: +: 4, 5, 7, 9. -: 6, 14.

• Temp ≥ 21.95: +: 3, 10, 11, 12, 13. -: 1, 2, 8.

Gain (Temp < 21.95) = I(9/14, 5/14) - [6/14 I(4/6, 2/6) + 8/14 I(5/8, 3/8)] = 0.00134

Repeat this for all real-valued features and all split points.

Additional complication: On any path from the root to a leaf

• Any discrete feature is tested at most once.

• Any real-valued feature can be tested many times.

This means that we will have larger trees and the trees may be difficult to understand.

1.3 Noise and overfitting

Training examples may be misclassified. For example, suppose that the class of Day 3 is corrupted
to No.

Day Outlook Temp Humidity Wind Tennis?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak No
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No



CS 486/686 Lecture 20 Extending Decision Trees 6

Outlook

Humidity

Yes No

Yes Wind

Yes No

Sunny

Normal High

Overcast Rain

Weak Strong

We need to expand the sub-tree under Outlook = Overcast.

Result: The tree becomes more complicated just to handle one outlier. –> Overfitting.

Outlook

Humidity

Yes No

Humidity

Yes Wind

No Yes

Wind

Yes No

Sunny

Normal High

Overcast

Normal High

Weak Strong

Rain

Weak Strong

What are the test errors for these two trees?

• With subtree replaced by a leaf node with Yes: 0 errors. (Recall that the first tree classifies
all examples in the test set perfectly.)

• With subtree: 2 errors – This is overfitting!



CS 486/686 Lecture 20 Extending Decision Trees 7

Problem: The ID3 algorithm is a perfectionist. It grows the tree until the tree perfectly classifies
all the training examples.

When there is noise in the data, the ID3 algorithm works really hard to capture all the noise.
Over-fitting occurs.

When the number of examples at a leaf is too small, the ID3 algorithm works diligently to capture
all of the classification even if it’s not worth it. Over-fitting occurs again.

Solutions: We want to force the tree to be simple.

1. Grow the tree to a pre-specified maximum depth.

2. Enforce a minimum number of examples at a leaf node.

3. Post-prune the tree using a validation set. (Most successful in practice.)

For all the solutions, we will have leaf nodes that are a mixture of positive and negative examples.
How should we make a decision at such a node?

• Label leaf with the majority class.

• Label leaf with a probability for each class proportional to the number of examples in the
class. p

p+n
and n

p+n
.

Suppose that we want to grow the tree to a maximum depth. What maximum depth should we
choose? This is a parameter of our model and we need to use a validation set to choose this
parameter.

Process for solution 1 (growing a tree to a maximum depth)

• Randomly split the entire data into a training set and a validation set. (For example, 2/3 is
the training set and 1/3 is the validation set.)

• For each pre-specified maximum depth, generate a tree with the maximum depth on the
training set.

• Calculate the prediction accuracy of the generated tree on the validation set.

• Choose the maximum depth which results in the tree with the highest prediction accuracy.



CS 486/686 Lecture 20 Extending Decision Trees 8

This fails to use all the available data for training. If the training set is too small, we may get a
poor hypothesis. If the validation set is too small, we may get a poor estimate of the prediction
accuracy.

Could we use the data more efficiently?

Answer: use k-fold cross-validation. Each example serves double duty—as training data and
validation data. Let k = 10.

1. For each pre-specified maximum depth, do steps 2 to 6.

2. First we split the data into 10 equal subsets.

3. Perform 10 rounds of learning.

4. On each round, 1/10 of the data is held out as a validation set and the remaining examples
are used as training data. (Draw a picture of this.)

5. Over the 10 rounds, we generate 10 different trees and determine their prediction accuracies
on 10 different validation sets.

6. Calculate the average prediction accuracy on the validation sets.

7. Choose the maximum depth that results in the highest prediction accuracy.


