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1 Chapter 18 Learning from Examples

1.1 Decision Trees

1.1.1 Introducing a decision tree

One of the simplest yet most successful forms of machine learning

Advantages of decision trees:

• Simple to understand and to interpret by a human.

• Performs well with a small data set

• Requires little data preparation.

Disadvantages of decision trees:

• Learning an optimal decision tree is NP-complete. Thus, a greedy heuristic approach is used
in practice.

• The learning algorithm can create over-complex trees that do not generalize well.

• May not be able to represent some functions.

• Small variations in the data might result in a completely different tree being generated. (Use
decision trees in conjunction with other learning algorithm.)

Take as input a vector of feature values and return a single output value.

For now: inputs have discrete values and the output has two possible values — a Binary classifi-
cation

Each example input will be classified as true (positive example) or false (negative example).

We will use the following example to illustrate the decision tree learning algorithm.

Example: Jeeves the valet

Jeeves is a valet to Bertie Wooster. On some days, Bertie likes to play tennis and asks Jeeves
to lay out his tennis things and book the court. Jeeves would like to predict whether Bertie will
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play tennis (and so be a better valet). Each morning over the last two weeks, Jeeves has recorded
whether Bertie played tennis on that day and various attributes of the weather.

Jeeves would like to evaluate the classifier he has come up with for predicting whether Bertie will
play tennis. Each morning over the next two weeks, Jeeves records the following data.

Jeeves the valet – the training set

Day Outlook Temp Humidity Wind Tennis?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

Jeeves the valet – the test set

Day Outlook Temp Humidity Wind Tennis?
1 Sunny Mild High Strong No
2 Rain Hot Normal Strong No
3 Rain Cool High Strong No
4 Overcast Hot High Strong Yes
5 Overcast Cool Normal Weak Yes
6 Rain Hot High Weak Yes
7 Overcast Mild Normal Weak Yes
8 Overcast Cool High Weak Yes
9 Rain Cool High Weak Yes
10 Rain Mild Normal Strong No
11 Overcast Mild High Weak Yes
12 Sunny Mild Normal Weak Yes
13 Sunny Cool High Strong No
14 Sunny Cool High Weak No

A decision tree performs a sequence of tests in the input features.
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• Each node performs a test on one input feature.

• Each arc is labeled with a value of the feature.

• Each leaf node specifies an output value.

Using the Jeeves training set, we will construct two decision trees using different orders of testing
the features.
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Example 1: Let’s construct a decision tree using the following order of testing features.

Test Outlook first.

For Outlook=Sunny, test Humidity. (After testing Outlook, we could test any of the three re-
maining features: Humidity, Wind, and Temp. We chose Humidity here.)

For Outlook=Rain, test Wind. (After testing Outlook, we could test any of the three remaining
features: Humidity, Wind, and Temp. We chose Wind here.)

Outlook

Humidity

Yes No

Yes Wind

Yes No

Sunny

Normal High

Overcast Rain

Weak Strong

Example 2: Let’s construct another decision tree by choosing Temp as the root node. This choice
will result in a really complicated tree shown on the next page.

We have constructed two decision trees and both trees can classify the training examples perfectly.
Which tree would you prefer?

One way to choose between the two is to evaluate them on the test set.

The first (and simpler) tree classifies 14/14 test examples correctly. Here are the decisions given
by the first tree on the test examples. (1. No. 2. No. 3. No. 4. Yes. 5. Yes. 6. Yes. 7. Yes. 8.
Yes. 9. Yes. 10. No. 11. Yes. 12. Yes. 13. No. 14. No. )

The second tree classifies 7/14 test examples correctly. Here are the decisions given by the second
tree on the test examples. (1. Yes. 2. No. 3. No. 4. No. 5. Yes. 6. Yes/No. 7. Yes. 8. Yes. 9.
Yes. 10. Yes. 11. Yes. 12. No. 13. Yes. 14. Yes.)

The second and more complicated tree performs worse on the test examples than the first tree,
possibly because the second tree is overfitting to the training examples.
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Every decision tree corresponds to a propositional formula.

For example, our simpler decision tree corresponds to the propositional formula.

(Outlook = Sunny∧Humidity = Normal)∨(Outlook = Overcast)∨(Outlook = Rain∧Wind = Weak)

If we have n features, how many different functions can we encode with decisions trees? (Let’s
assume that every feature is binary.)

Each function corresponds to a truth table. Each truth table has 2n rows. There are 22
n possible

truth tables.

With n = 10, 21024 ≈ 10308

How do we find a good hypothesis in such a large space?

1.1.2 Constructing a decision tree

Want a tree that is consistent with the examples and is as small as possible.

Intractable to find the smallest consistent tree. (Intractable to search through 22
10 function.

Use heuristics to find a small consistent tree.

The decision-tree-learning algorithm:

• A greedy divide-and-conquer approach

• Test the most important feature first.

• Solve the subproblems recursively.

• The most important feature makes the most difference to the classification of an example.
We hope to minimize the number of tests to create a shallow tree.
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The ID3 algorithm:

Algorithm 1 ID3 Algorithm (Features, Examples
1: If all examples are positive, return a leaf node with decision yes.
2: If all examples are negative, return a leaf node with decision no.
3: If no features left, return a leaf node with the most common decision of the examples.
4: If no examples left, return a leaf node with the most common decision of the examples in the parent.
5: else
6: choose the most important feature f
7: for each value v of feature f do
8: add arc with label v
9: add subtree ID3(F − f, s ∈ S|f(s) = v)

10: end for

When would we encounter the base case “no features left”?

• We encounter this case when the data is noisy and there are multiple different decisions for
the same set of feature values.

• See the following example.
Day Outlook Temp Humidity Wind Tennis?

1 Sunny Hot High Weak No
2 Sunny Hot High Weak Yes
3 Sunny Hot High Weak Yes
4 Sunny Hot High Weak Yes

These four data points all have the same feature values, but the decisions are different. This
may happen if the decision is influenced by another feature that we don’t observe. For
example, the decision may be influenced by Bertie’s mood when he woke up that morning,
but Jeeves does not observe Bertie’s mood directly.

• In this case, we return the majority decision of all the examples (breaking ties at random).

When would we encounter the base case “no examples left”?

• We encounter this base case when a certain combination of feature values does not appear
in the training set.
For example, the combination Temp = High, Wind = Weak, Humidity = High and Outlook
= Rain does not appear in our training set.

• In this case, we will choose the majority decision among all the examples in the parent node
(breaking ties at random).
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For our example, the parent node of the right mode node is “Outlook”. There are 2 examples
at the node: 3 is a positive example and 1 is a negative example. We have a tie here. Thus,
we will randomly choose one of the two decisions for this node (Thus, I labeled this node
Yes/No.)

In the ID3 algorithm, the most important heuristic is choosing the most important feature to test
at each step. How should we measure the importance of each feature and choose a feature that is
the most important?

Intuitively, we want to choose a feature that allows us to make a decision as soon as possible. By
doing this, we minimize the depth of the tree and keep the tree small.

We can measure the information content of each feature by comparing our uncertainty before and
after testing the feature.

Suppose that before testing a feature, we have p positive examples and n negative examples. Let
the feature have k values v1, . . . , vk. After testing the feature, for each value vi, we will have pi
positive examples and ni negative examples.

We can measure our uncertainty before and after testing a feature by the notion of “entropy”,
which comes from information theory.

Given a probability distribution P (c1), . . . , P (ck) over k outcomes c1, . . . , ck. The entropy of the
distribution is given by the formula below.

I(P (c1), . . . , P (ck)) = −
k∑

i=1

P (ci) log2(P (ci))

CQ:

• What is the entropy of the distribution (0.5, 0.5)?
I(0.5, 0.5) = −1/2log2(1/2)− 1/2log2(1/2) = 1.
There is one bit of uncertainty in this distribution.

• What is the entropy of the distribution (0.01, 0.99)?
I(0.99, 0.01) = −0.99log2(0.99)− 0.01log2(0.01) = 0.08.
There is 0.08 bit of uncertainty in this distribution.
There is very little uncertainty in this distribution. We almost know for sure that the outcome
will be the first one.
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For a distribution over two outcomes, the entropy is maximized at p = 1/2 and is minimized at
p = 0 and p = 1. By definition, I(1, 0) = 0 and I(0, 1) = 0.

Before testing a feature, there are two possible outcomes: The example is positive with probability
p

p+n
. The example is negative with probability n

p+n
. Thus, the entropy before testing a feature is

I

(
p

p+ n
,

n

p+ n

)
.

After testing a feature, the expected entropy is given by:

k∑
i=1

pi + ni

p+ n
∗ I

(
pi

pi + ni

,
ni

pi + ni

)
.

pi+ni

p+n
is the probability that the feature takes the value i, and I

(
pi

pi+ni
, ni

pi+ni

)
is the entropy given

that the feature takes the value i.

After testing a feature, the entropy should be reduced. Thus, the expected information gain by
testing a feature is given by the entropy before testing the feature minus the expected entropy
after testing the feature.

I

(
p

p+ n
,

n

p+ n

)
−

k∑
i=1

pi + ni

p+ n
∗ I

(
pi

pi + ni

,
ni

pi + ni

)

We will choose the feature with the largest information gain — This is the most important feature
since it does the best job at reducing our uncertainty.

Applying the ID3 algorithm
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Day Outlook Temp Humidity Wind Tennis?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

When we begin, we have 9 positive and 5 negative examples in the training set.

Positive examples: 3, 4, 5, 7, 9, 10, 11, 12, 13 (9 examples) Negative examples: 1, 2, 6, 8, 14 (5
examples)

The entropy in the training set is

I

(
9

14
,
5

14

)
= − 9

14
∗ log2

(
9

14

)
− 5

14
∗ log2

(
5

14

)
= 0.940.

The possible features to split on are: Outlook, Temp, Humidity, and Wind. We need to find the
feature that has the highest information gain: i.e. the feature that gives us the largest reduction in
the uncertainty of the data. Recall that the formula for calculating information gain is as follows.

Gain(A) = I

(
p

p+ n
,

n

p+ n

)
−

k∑
i=1

pi + ni

p+ n
∗ I

(
pi

pi + ni

,
ni

pi + ni

)
where feature A divides the examples into k subsets, and pi and ni represent the number of positive
and negative examples in subset i, i = 1, . . . , k.

Choosing the feature in the root node

If we split on Outlook, we would get

• Outlook = Sunny. +: 9, 11. -: 1, 2, 8.

• Outlook = Overcast. +: 3, 7, 12, 13. -: none.
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• Outlook = Rain. +: 4, 5, 10. -: 6, 14.

Gain(Outlook) (1)

= 0.940−
(

5

14
I

(
2

5
,
3

5

)
+

4

14
I

(
4

4
,
0

4

)
+

5

14
I

(
3

5
,
2

5

))
(2)

= 0.940−
(

5

14
0.971 +

4

14
0 +

5

14
0.971

)
(3)

= 0.940− 0.694 (4)
= 0.247. (5)

If we split on Temp, we would get

• Temp = Cool. +: 5, 7, 9. -: 6.

• Temp = Mild. +: 4, 10, 11, 12. -: 8, 14.

• Temp = Hot. +: 3, 13. -: 1, 2.

Gain(Temp) (6)

= 0.940−
(

4

14
I

(
2

4
,
2

4

)
+

6

14
I

(
4

6
,
2

6

)
+

4

14
I

(
3

4
,
1

4

))
(7)

= 0.940−
(

4

14
1 +

6

14
0.918 +

5

14
0.811

)
(8)

= 0.940− 0.911 (9)
= 0.029. (10)

If we split on Wind, we would get

• Wind = Weak. +: 3, 4, 5, 9, 10, 13. -: 1, 8.

• Wind = Strong. +: 7, 11, 12. -: 2, 6, 14.
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Gain(Wind) (11)

= 0.940−
(

6

14
I

(
3

6
,
3

6

)
+

8

14
I

(
6

8
,
2

8

))
(12)

= 0.940−
(

6

14
1 +

8

14
0.811

)
(13)

= 0.940− 0.892 (14)
= 0.048. (15)

If we split on Humidity, we would get

• Humidity = Normal. +: 5, 7, 9, 10, 11, 13. -: 6.

• Humidity = High. +: 3, 4, 12. -: 1, 2, 8, 14.

Gain(Humidity) (16)

= 0.940−
(

7

14
I

(
3

7
,
4

7

)
+

7

14
I

(
6

7
,
1

7

))
(17)

= 0.940−
(

7

14
0.985 +

7

14
0.592

)
(18)

= 0.940− 0.789 (19)
= 0.151 (20)

The expected information gain is the largest if we test Outlook. Thus, we will choose Outlook as
the root of the decision tree.

• For Outlook = Sunny, there are both positive and negative examples. Thus, we need to
repeat the procedure to choose a feature to test.

• For Outlook = Overcast, all examples are positive. So we add a leaf node with the decision
Yes.

• For Outlook = Rain, there are both positive and negative examples. Thus, we need to repeat
the procedure to choose a feature to test.
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Subtree rooted at Outlook = Sunny

For Outlook = Sunny, we first compute the entropy of this subtree. There are 5 training examples,
of which 2 are positive and 3 are negative. (+: 9, 11. -: 1, 2, 8.)

The entropy of this subtree is

I

(
2

5
,
3

5

)
(21)

= −2

5
log2

(
2

5

)
− 3

5
log2

(
3

5

)
(22)

= 0.971 (23)

The possible features to test are: Temp, Humidity, and Wind.

If we test Temp, we will get

• Temp = Cool. +: 9. -: none.

• Temp = Mild. +: 11. -: 8.

• Temp = Hot. +: none. -: 1, 2.

Gain(Temp) (24)

= 0.971−
(
2

5
I

(
0

2
,
2

2

)
+

2

5
I

(
1

2
,
1

2

)
+

1

5
I

(
1

1
,
0

1

))
(25)

= 0.971−
(
2

5
0 +

2

5
1 +

1

5
0

)
(26)

= 0.971− 0.4 (27)
= 0.571. (28)

If we test Humidity, we will get

• Humidity = Normal. +: 9, 11. -: none.

• Humidity = High. +: none. -: 1, 2, 8.
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Gain(Humidity) (29)

= 0.971−
(
3

5
I

(
0

3
,
3

3

)
+

2

5
I

(
2

2
,
0

2

))
(30)

= 0.971−
(
3

5
0 +

2

5
0

)
(31)

= 0.971− 0 (32)
= 0.971 (33)

If we test Wind, we will get

• Wind = Weak. +: 9. -: 1, 8.

• Wind = Strong. +: 11. -: 2.

Gain(Wind) (34)

= 0.971−
(
2

5
I

(
1

2
,
1

2

)
+

3

5
I

(
1

3
,
2

3

))
(35)

= 0.971−
(
2

5
1 +

3

5
0.918

)
(36)

= 0.971− 0.951 (37)
= 0.020. (38)

Thus, we will test Humidity at this node. For Humidity = Normal, we have a leaf node with the
decision Yes since all examples are positive. For Humidity = High, we have a leaf node with the
decision No since all examples are negative.
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Subtree rooted at Outlook = Rain

For Outlook = Rain, we first compute the entropy of this subtree. There are 5 training examples,
of which 3 are positive and 2 are negative. (+: 4, 5, 10. -: 6, 14.)

The entropy of this subtree is

I

(
3

5
,
2

5

)
(39)

= −3

5
log2

(
3

5

)
− 2

5
log2

(
2

5

)
(40)

= 0.971 (41)

The possible features to test are: Temp, Humidity, and Wind.

If we test Temp, we will get

• Temp = Cool. +: 5. -: 6.

• Temp = Mild. +: 4, 10. -: 14.

• Temp = Hot. +: none. -: none.

Gain(Temp) (42)

= 0.971−
(
3

5
I

(
2

3
,
1

3

)
+

2

5
I

(
1

2
,
1

2

))
(43)

= 0.971−
(
3

5
0.918 +

2

5
1

)
(44)

= 0.971− 0.951 (45)
= 0.02. (46)

If we test Humidity, we will get

• Humidity = Normal. +: 5, 10. -: 6.

• Humidity = High. +: 4. -: 14.
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Gain(Humidity) (47)

= 0.971−
(
3

5
I

(
2

3
,
1

3

)
+

2

5
I

(
1

2
,
1

2

))
(48)

= 0.971−
(
3

5
0.918 +

2

5
1

)
(49)

= 0.971− 0951 (50)
= 0.02 (51)

If we test Wind, we will get

• Wind = Weak. +: 4, 5, 10.. -: none.

• Wind = Strong. +: none. -: 6, 14.

Gain(Wind) (52)

= 0.971−
(
2

5
I

(
0

2
,
2

2

)
+

3

5
I

(
3

3
,
0

3

))
(53)

= 0.971−
(
2

5
0 +

3

5
0

)
(54)

= 0.971− 0 (55)
= 0.971. (56)

Thus, we will test Wind at this node. For Wind = Weak, we have a leaf node with the decision
Yes since all examples are positive. For Wind = Strong, we have a leaf node with the decision No
since all examples are negative.

The final decision tree is, unsurprisingly, the first one we’ve seen.
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Outlook

Humidity

Yes No

Yes Wind

Yes No

Sunny

Normal High

Overcast Rain

Weak Strong


