Decisions with Multiple Agents: Game Theory

Alice Gao
Lecture 17

Based on work by K. Leyton-Brown, K. Larson, and P. van Beek

Outline

Learning Goals

Revisiting the Learning goals

Learning Goals

By the end of the lecture, you should be able to

- Determine dominant-strategy equilibria of a 2-player normal form game.
- Determine pure-strategy Nash equilibria of a 2-player normal form game.
- Determine Pareto optimal outcomes of a 2-player normal form game.
- Calculate a mixed strategy Nash equilibrium of a 2-player normal form game.

Prisoner's dilemma

Anna

		refuse	
Alice	testify		
	refuse	$(-1,-1)$	$(-3,0)$
	testify	$(0,-3)$	$(-2,-2)$

CQ: Prisoner's dilemma - dominant strategy equilibrium

CQ: Does this game have a dominant strategy equilibrium? If so, which outcome is such an equilibrium?
(A) (refuse, refuse)
(B) (refuse, testify)
(C) (testify, refuse)
(D) (testify, testify)
(E) There is no dominant strategy equilibrium.

CQ: Prisoner's dilemma - Nash equilibria

CQ: How many of the four outcomes are pure strategy Nash equilibria?
(A) 0
(B) $1 \quad(\mathrm{C}) 2$
(D) 3
(E) 4

CQ: Prisoner's dilemma - Pareto optimality

CQ: How many of the four outcomes are Pareto optimal?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

Matching quarters

\[

\]

Alice wants the two coins to match whereas Anna wants the two coins to mismatch.

CQ: Matching quarters - Nash equilibria

CQ: How many of the four outcomes are pure strategy Nash equilibria?
(A) 0
(B) $1 \quad(\mathrm{C}) 2$
(D) 3
(E) 4

Anna

	heads	
tails		
Aliceheads tails	$(1,0)$	$(0,1)$

Conflicting interests

		dancing	concert
Alice	dancingconcert	$(2,1)$	$(0,0)$
		$(0,0)$	$(1,2)$

Alice and Anna want to sign up for an activity together.
They both prefer to sign up for the same activity.
However, Alice prefers dancing over a concert whereas Anna prefers a concert over dancing.

CQ: Conflicting interests - mixed strategy Nash equilibria

CQ: At the mixed strategy Nash equilibrium, with what probability does Alice go dancing?
(A) $[0,0.2)$
(B) $[0.2,0.4)$
(C) $[0.4,0.6)$
(D) $[0.6,0.8)$
(E) $[0.8,1]$

Anna

Alice | |
| :---: |
| dancing |
| | |
| |

CQ: Conflicting interests - mixed strategy Nash equilibria

CQ: At the mixed strategy Nash equilibrium, with what probability does Anna go dancing?
(A) $[0,0.2)$
(B) $[0.2,0.4)$
(C) $[0.4,0.6)$
(D) $[0.6,0.8)$
(E) $[0.8,1]$

Anna

Alice	dancing	danci	concert
		$(2,1)$	$(0,0)$
	concert	$(0,0)$	$(1,2)$

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- Determine dominant-strategy equilibria of a 2-player normal form game.
- Determine pure-strategy Nash equilibria of a 2-player normal form game.
- Determine Pareto optimal outcomes of a 2-player normal form game.
- Calculate a mixed strategy Nash equilibrium of a 2-player normal form game.

