
CS 486/686 Lecture 15 The Value Iteration Algorithm 1

1 Algorithms for finding the optimal policy

1.1 Optimal policies and the utilities of states

Suppose that we enter state s and follow the optimal policy from s onwards, what is our total
expected utility? This is a way to measure the “true utility” of each state s, denoted by U(s).

Note that U(s) is very different from R(s). R(s) is the “one-time” “short-term” reward of reaching
state s. U(s) is the “long term” total reward from s onwards.

The following figure shows U(s) for every state (with discount factor γ = 1 and R(s) = −0.04).
The utilities are higher for states closer to the +1 exit because fewer steps are required to reach
the exit.

1 2 3 4
1 0.705 0.655 0.611 0.388
2 0.762 X 0.660 -1
3 0.812 0.868 0.918 +1

Given U(s), it’s straightforward to determine the optimal action in each state.

What is my expected utility if I’m in state s and take action a?

U(s, a) =
∑
s′

P (s′|s, a)U(s′)

Given this, I would like to choose the action that maximizes my expected utility.
π∗(s) = argmax

a
U(s, a).

What is the optimal policy in s13?

• U(s13, down) = 0.8 ∗ 0.660 + 0.1 ∗ 0.655 + 0.1 ∗ 0.388 = 0.6323

• U(s13, left) = 0.8 ∗ 0.655 + 0.1 ∗ 0.660 + 0.1 ∗ 0.611 = 0.6511

• U(s13, right) = 0.8 ∗ 0.388 + 0.1 ∗ 0.611 + 0.1 ∗ 0.660 = 0.4375

• U(s13, up) = 0.8 ∗ 0.611 + 0.1 ∗ 0.655 + 0.1 ∗ 0.388 = 0.5931

Therefore, π∗(s13) = left.

How do we determine U(s)?



CS 486/686 Lecture 15 The Value Iteration Algorithm 2

1.2 Value iteration

Basic idea:

• Calculate the true utility U(s) of each state s.

• Choose the optimal action in each state based on U(s).

U(s) are the unique solutions of the Bellman equations.

U(s) = R(s) + γmax
a

∑
s′

P (s′|s, a)U(s′)

R(s) is the immediate reward for reaching state s. γmaxa
∑

s′ P (s′|s, a)U(s′) is the discounted
expected utility of the next state, assuming that the agent chooses the optimal action.

The Bellman equation for U(s11):

U(s11) = −0.04 + γmax[0.8U(s12) + 0.1U(s21) + 0.1U(s11),

0.9U(s11) + 0.1U(s12),

0.9U(s11) + 0.1U(s21),

0.8U(s21) + 0.1U(s12) + 0.1U(s11)].

For our example, there are 9 Bellman equations, one for each state. We can solve these 9 equations
to find the 9 unknowns U(s).



CS 486/686 Lecture 15 The Value Iteration Algorithm 3

Can we solve this system of equations efficiently?

• No. These equations are non-linear since “max” is non-linear.

• We can solve linear equations efficiently using linear algebra techniques.

Instead, we will solve for U(s) using an iterative approach.

1. Start with arbitrary initial values for the utilities.

2. Let Ui(s) be the utility value for state s at the ith iteration.
At every iteration, update all U(s) simultaneously using the following update rule.

Ui+1(s)← R(s) + γmax
a

∑
s′

P (s′|s, a)Ui(s
′)

3. Terminate when the maximum change from Ui(s) to Ui+1(s) for all s is small enough.

If we apply the Bellman update infinitely often, we are guaranteed to converge to the optimal
U(s).

A few notes about the update rule in step 2:

• We apply the update rule from right to left. Plug in the old utility values on the right. The
result from the right becomes the new utility value.

• Updating all values “simultaneously” means that, we will use the values of the utilities from
the previous iteration to calculate the values of the utilities for the current iteration, and
then we will replace all the utility values all at once.



CS 486/686 Lecture 15 The Value Iteration Algorithm 4

U0(s):

1 2 3 4
1 0 0 0 0
2 0 X 0 -1
3 0 0 0 +1

U1(s33) = −0.04 + 1 ∗max[0.8 ∗ 1, 0.1 ∗ 1, 0, 0.1 ∗ 1] = −0.04 + 0.8 = 0.76

U1(s23) = −0.04 + 1 ∗max[0.1 ∗ (−1), 0.8 ∗ (−1), 0.1 ∗ (−1), 0] = −0.04 + 0 = −0.04

U1(s):

1 2 3 4
1 −0.04 −0.04 −0.04 −0.04
2 −0.04 X −0.04 -1
3 −0.04 −0.04 0.76 +1

U2(s33) = −0.04 + 0.8 ∗ 1 + 0.1 ∗ (−0.04) + 0.1 ∗ 0.76 = 0.832

U2(s23) = −0.04 + 0.8 ∗ 0.76 + 0.1(−0.04) + 0.1(−1) = 0.464

U2(s32) = −0.04 + 0.8 ∗ 0.76 + 0.2(−0.04) = 0.56

U2(s):

1 2 3 4
1 −0.08 −0.08 −0.08 −0.08
2 −0.08 X 0.464 -1
3 −0.08 0.56 0.832 +1

U3(s33) = −0.04 + 0.8 ∗ 1 + 0.1 ∗ 0.464 + 0.1 ∗ 0.832 = 0.890

U3(s23) = −0.04 + 0.8 ∗ 0.832 + 0.1(0.464) + 0.1(−1) = 0.572

U3(s32) = −0.04 + 0.8 ∗ 0.832 + 0.1(0.56) + 0.1(0.56) = 0.738

U3(s31) = −0.04 + 0.8 ∗ 0.56 + 0.1(−0.08) + 0.1(−0.08) = 0.392

U3(s13) = −0.04 + 0.8 ∗ 0.464 + 0.1(−0.08) + 0.1(−0.08) = 0.315



CS 486/686 Lecture 15 The Value Iteration Algorithm 5

U3(s):

1 2 3 4
1 −0.12 −0.12 0.315 −0.12
2 −0.12 X 0.572 -1
3 0.392 0.738 0.890 +1

U4(s):

1 2 3 4
1 −0.16 0.188 0.394 0.100
2 0.250 X 0.628 -1
3 0.577 0.819 0.906 +1

U5(s):

1 2 3 4
1 0.162 0.312 0.492 0.185
2 0.471 X 0.648 -1
3 0.698 0.849 0.914 +1

The states accumulate negative rewards until a path is found to s34.

After


