Markov Decision Processes

Alice Gao
Lecture 14
Based on work by K. Leyton-Brown, K. Larson, and P. van Beek

Outline

Learning Goals

Revisiting the Learning goals

Learning Goals

By the end of the lecture, you should be able to

- Describe/trace value iteration for a Markov Decision Process.

CQ: A stochastic environment

CQ: The robot is in s_{14} and tries to move to the right, what is the probability that the robot stays in s_{14} ?
(A) 0.1
(B) 0.2
(C) 0.8
(D) 0.9
(E) 1.0

CQ: A stochastic environment

CQ: True or False: The optimal solution to this problem is the fixed action sequence: down, down, right, right, and right.
(A) True
(B) False
(C) I don't know

CQ: A stochastic environment

CQ: True or False: The fixed action sequence "down, down, right, right, and right" could take us to any square in the environment with positive probability.
(A) True
(B) False
(C) I don't know

CQ: A stochastic environment

CQ: True or False: The solution to this problem should be a fixed sequence of actions. For example, a fixed sequence of actions is down, down, right, right, right.
(A) True
(B) False
(C) I don't know

CQ: The optimal policy

CQ: Take a guess. What do you think is the optimal action in state s_{13} ?
(A) Up
(B) Down
(C) Left
(D) Right

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- Describe/trace value iteration for a Markov Decision Process.

