Inferences in Bayesian Networks

Alice Gao
Lecture 12
Based on work by K. Leyton-Brown, K. Larson, and P. van Beek

Outline

Learning Goals

A Query for the Holmes Scenario

The Variable Elimination Algorithm

Revisiting the Learning goals

Learning Goals

By the end of the lecture, you should be able to

- Define factors. Manipulate factors using operations restrict, sum out, multiply and normalize.
- Compute a prior or a posterior probability given a Bayesian network.
- Describe/trace/implement the variable elimination algorithm for calculating a prior or a posterior probability given a Bayesian network.

A Bayesian Network for the Holmes Scenario

Answering a Question

What is the probability that a burglary is happening given that Dr. Watson and Mrs. Gibbon both call?

$$
P(B \mid W \wedge G)
$$

- Query variables: B
- Evidence variables: W and G
- Hidden variables: E and A (Let's drop Radio.)

Answering a Question

What is the probability that a burglary is happening given that Dr. Watson and Mrs. Gibbon both call?

$$
P(B \mid W \wedge G)=\frac{P(B \wedge W \wedge G)}{P(B \wedge W \wedge G)+P(\neg B \wedge W \wedge G)}
$$

Answering this question require computing two joint probabilities. Let's compute the first one $P(B \wedge W \wedge G)$.

Number of operations

How many addition and multiplication operations do we need to perform to evaluate the following expression?

$$
\begin{array}{r}
\sum_{e \in\{t, f\}} \sum_{a \in\{t, f\}} \sum_{r \in\{t, f\}} P(B=t) P(E=e) P(A=a \mid B=t \wedge E=e) \\
P(R=r \mid E=e) P(G=t \mid A=a) P(W=t \mid A=a)
\end{array}
$$

(A) Less than 10
(B) 10-25
(C) $26-40$
(D) 41-55
(E) More than 55

Number of operations

How many addition and multiplication operations do we need to perform to evaluate the following expression?

$$
\begin{aligned}
& P(B=t \wedge W=t \wedge G=t) \\
& =P(B=t) \sum_{a \in\{t, f\}} P(G=t \mid A=a) P(W=t \mid A=a) \\
& \quad \sum_{e \in\{t, f\}} P(E=e) P(A=a \mid B=t \wedge E=e)
\end{aligned}
$$

(A) Less than 10
(B) 10-25
(C) $26-40$
(D) 41-55
(E) More than 55

Factors

- A factor is a representation of a function from a tuple of random variables into a number.
- We will write factor f on variables X_{1}, \ldots, X_{j} as $f\left(X_{1}, \ldots, X_{j}\right)$.
- A factor denotes a distribution over the given tuple of variables in some (unspecified) context
- e.g., $P\left(X_{1}, X_{2}\right)$ is a factor $f\left(X_{1}, X_{2}\right)$
- e.g., $P\left(X_{1}, X_{2}, X_{3}=v_{3}\right)$ is a factor $f\left(X_{1}, X_{2}\right)$
- e.g., $P\left(X_{1}, X_{3}=v_{3} \mid X_{2}\right)$ is a factor $f\left(X_{1}, X_{2}\right)$

Restrict a factor

- Our first operation: we can assign values to some variables of a factor.
- $f\left(X_{1}=v_{1}, X_{2}, \ldots, X_{j}\right)$, where $v_{1} \in \operatorname{dom}\left(X_{1}\right)$, is a factor on X_{2}, \ldots, X_{j}.
- $f\left(X_{1}=v_{1}, X_{2}=v_{2}, \ldots, X_{j}=v_{j}\right)$ is a number that is the value of f when each X_{i} has value v_{i}.

Example: Restrict a factor

$$
\begin{aligned}
& \begin{array}{|ccc|c|}
\hline X & Y & Z & \mathrm{val} \\
\hline \mathrm{t} & \mathrm{t} & \mathrm{t} & 0.1 \\
\mathrm{t} & \mathrm{t} & \mathrm{f} & 0.9 \\
\mathrm{t} & \mathrm{f} & \mathrm{t} & 0.2 \\
\mathrm{t} & \mathrm{f} & \mathrm{f} & 0.8 \\
\hline Y & Z & \mathrm{val} \\
\hline \mathrm{t} & \mathrm{t} & 0.1 \\
\hline \mathrm{t} & \mathrm{f} & 0.9 \\
\mathrm{f} & \mathrm{t} & 0.2 \\
\mathrm{f} & \mathrm{f} & 0.8 \\
\hline
\end{array} \\
& r(X=t, Y=f, Z=f)=0.8
\end{aligned}
$$

Example: Restrict a factor

What is $f_{1}(A=t, B)$?

$$
f_{1}: \begin{array}{|lll|}
\hline A & B & \mathrm{val} \\
\hline \mathrm{t} & \mathrm{t} & 0.1 \\
\mathrm{t} & \mathrm{f} & 0.9 \\
\mathrm{f} & \mathrm{t} & 0.2 \\
\mathrm{f} & \mathrm{f} & 0.8 \\
\hline
\end{array}
$$

Sum out variables

Our second operation: we can sum out a variable, say X_{1} with domain $\left\{v_{1}, \ldots, v_{k}\right\}$, from factor $f\left(X_{1}, \ldots, X_{j}\right)$, resulting in a factor on X_{2}, \ldots, X_{j} defined by:

$$
\begin{aligned}
& \left(\sum_{X_{1}} f\right)\left(X_{2}, \ldots, X_{j}\right) \\
& \quad=f\left(X_{1}=v_{1}, \ldots, X_{j}\right)+\cdots+f\left(X_{1}=v_{k}, \ldots, X_{j}\right)
\end{aligned}
$$

Example: Sum out variables

	A	B	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
f_{3} :	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

$\sum_{B} f_{3}:$| A | A | C |
| :---: | :---: | :---: |
| | t | t |
| t | f | 0.57 |
| f | t | 0.43 |
| f | t | 0.54 |
| f | f | 0.46 |

Example: Sum out variables

What is $\sum_{C} f_{3}$?

$f_{3}:$| A | B | C | val |
| :---: | :---: | :---: | ---: |
| t | t | t | 0.03 |
| t | t | f | 0.07 |
| t | f | t | 0.54 |
| t | f | f | 0.36 |
| f | t | t | 0.06 |
| f | t | f | 0.14 |
| f | f | t | 0.48 |
| f | f | f | 0.32 |

Multiplying factors

- Our third operation: factors can be multiplied together.
- The product of factor $f_{1}(\bar{X}, \bar{Y})$ and $f_{2}(\bar{Y}, \bar{Z})$, where \bar{Y} are the variables in common, is the factor $\left(f_{1} \times f_{2}\right)(\bar{X}, \bar{Y}, \bar{Z})$ defined by:

$$
\left(f_{1} \times f_{2}\right)(\bar{X}, \bar{Y}, \bar{Z})=f_{1}(\bar{X}, \bar{Y}) f_{2}(\bar{Y}, \bar{Z}) .
$$

- Note: it's defined on all $\bar{X}, \bar{Y}, \bar{Z}$ triples, obtained by multiplying together the appropriate pair of entries from f_{1} and f_{2}.

Example: Multiplying factors

$f_{1}:$| A | B | val |
| :--- | :--- | :--- |
| t | t | 0.1 |
| t | f | 0.9 |
| f | t | 0.2 |
| f | f | 0.8 |
| $f_{2}:$ | B C val
 t t 0.3
 t f 0.7
 f t 0.6
 f f 0.4 | |$.$| (|
| :--- |

$f_{1} \times f_{2}:$| A | B | C | val |
| :---: | :---: | :---: | :---: |
| t | t | t | 0.03 |
| t | t | f | 0.07 |
| t | f | t | 0.54 |
| t | f | f | 0.36 |
| f | t | t | 0.06 |
| f | t | f | 0.14 |
| f | f | t | 0.48 |
| f | f | f | 0.32 |

Example: Multiplying factors

What is $f_{1} \times f_{2}$?

$f_{1}:$| A | B | val |
| :--- | :--- | :--- |
| t | t | 0.1 |
| t | f | 0.9 |
| f | t | 0.2 |
| f | f | 0.8 |

$f_{2}:$| C | B | val |
| :---: | :---: | :---: |
| t | t | 0.3 |
| t | f | 0.7 |
| f | t | 0.6 |
| f | f | 0.4 |

Variable elimination algorithm

To compute $P\left(X_{q} \mid X_{o_{1}}=v_{1} \wedge \ldots \wedge X_{o_{j}}=v_{j}\right)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- For each of the other variables $X_{s_{i}} \in\left\{X_{s_{1}}, \ldots, X_{s_{k}}\right\}$, sum out $X_{s_{i}}$
- Multiply the remaining factors.
- Normalize by dividing the resulting factor $f\left(X_{q}\right)$ by $\sum_{X_{q}} f\left(X_{q}\right)$.

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- Define factors. Manipulate factors using operations restrict, sum out, multiply and normalize.
- Compute a prior or a posterior probability given a Bayesian network.
- Describe/trace/implement the variable elimination algorithm for calculating a prior or a posterior probability given a Bayesian network.

