Inferences in Bayesian Networks

Alice Gao Lecture 12

Based on work by K. Leyton-Brown, K. Larson, and P. van Beek

Learning Goals

A Query for the Holmes Scenario

The Variable Elimination Algorithm

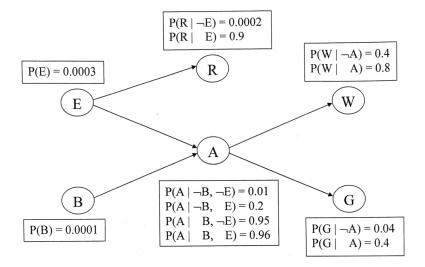
Revisiting the Learning goals

Learning Goals

By the end of the lecture, you should be able to

- Define factors. Manipulate factors using operations restrict, sum out, multiply and normalize.
- Compute a prior or a posterior probability given a Bayesian network.
- Describe/trace/implement the variable elimination algorithm for calculating a prior or a posterior probability given a Bayesian network.

A Bayesian Network for the Holmes Scenario



What is the probability that a burglary is happening given that Dr. Watson and Mrs. Gibbon both call?

 $P(B|W \wedge G)$

- Query variables: B
- Evidence variables: W and G
- Hidden variables: E and A (Let's drop Radio.)

What is the probability that a burglary is happening given that Dr. Watson and Mrs. Gibbon both call?

$$P(B|W \wedge G) = \frac{P(B \wedge W \wedge G)}{P(B \wedge W \wedge G) + P(\neg B \wedge W \wedge G)}$$

Answering this question require computing two joint probabilities. Let's compute the first one $P(B \land W \land G)$.

Number of operations

How many addition and multiplication operations do we need to perform to evaluate the following expression?

$$\sum_{e \in \{t,f\}} \sum_{a \in \{t,f\}} \sum_{r \in \{t,f\}} P(B=t)P(E=e)P(A=a|B=t \land E=e)$$
$$P(R=r|E=e)P(G=t|A=a)P(W=t|A=a)$$

- (A) Less than 10
- (B) 10-25
- (C) 26-40
- (D) 41-55
- (E) More than 55

Number of operations

How many addition and multiplication operations do we need to perform to evaluate the following expression?

$$P(B = t \land W = t \land G = t)$$

= $P(B = t) \sum_{a \in \{t, f\}} P(G = t | A = a) P(W = t | A = a)$
$$\sum_{e \in \{t, f\}} P(E = e) P(A = a | B = t \land E = e)$$

- (A) Less than 10
- (B) 10-25
- (C) 26-40
- (D) 41-55
- (E) More than 55

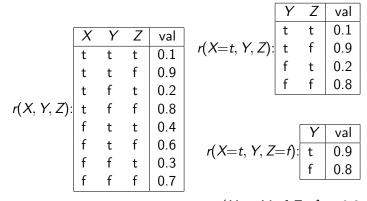
Factors

- A factor is a representation of a function from a tuple of random variables into a number.
- We will write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$.
- A factor denotes a distribution over the given tuple of variables in some (unspecified) context
 - e.g., $P(X_1, X_2)$ is a factor $f(X_1, X_2)$
 - ▶ e.g., P(X₁, X₂, X₃ = v₃) is a factor f(X₁, X₂)
 - e.g., $P(X_1, X_3 = v_3 | X_2)$ is a factor $f(X_1, X_2)$

Restrict a factor

- Our first operation: we can assign values to some variables of a factor.
 - $f(X_1 = v_1, X_2, \dots, X_j)$, where $v_1 \in dom(X_1)$, is a factor on X_2, \dots, X_j .
 - f(X₁ = v₁, X₂ = v₂,..., X_j = v_j) is a number that is the value of f when each X_i has value v_i.

Example: Restrict a factor



r(X=t, Y=f, Z=f) = 0.8

Example: Restrict a factor

What is $f_1(A = t, B)$?

	Α	В	val
	t	t	0.1
<i>f</i> ₁ :	t	f	0.9
	f	t	0.2
	f	f	0.8

Our second operation: we can sum out a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_j)$, resulting in a factor on X_2, \ldots, X_j defined by:

$$(\sum_{X_1} f)(X_2, ..., X_j) = f(X_1 = v_1, ..., X_j) + \dots + f(X_1 = v_k, ..., X_j)$$

Example: Sum out variables

	Α	В	С	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
f3:	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

	A	С	val
	t	t	0.57
$\sum_{B} f_3$:	t	f	0.43
	f	t	0.54
	f	f	0.46

Example: Sum out variables

What is $\sum_C f_3$?

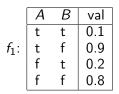
	A	В	С	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
f3:	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

Multiplying factors

- Our third operation: factors can be multiplied together.
- ► The product of factor f₁(X, Y) and f₂(Y, Z), where Y are the variables in common, is the factor (f₁ × f₂)(X, Y, Z) defined by:

$$(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y})f_2(\overline{Y}, \overline{Z}).$$

► Note: it's defined on all X, Y, Z triples, obtained by multiplying together the appropriate pair of entries from f₁ and f₂. Example: Multiplying factors



	В	С	val
	t	t	0.3
f ₂ :	t	f	0.7
	f	t	0.6
	f	f	0.4

			t
f_1	×	<i>f</i> ₂ :	t
			f

	A	В	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
f_2 :	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

 $\overline{}$

н

Example: Multiplying factors

What is $f_1 \times f_2$?

	Α	В	val
	t	t	0.1
<i>f</i> ₁ :	t	f	0.9
	f	t	0.2
	f	f	0.8
	С	В	val
	t	t	0.3
<i>f</i> ₂ :	t	f	0.7
	f	t	0.6
	f	f	0.4

Variable elimination algorithm

To compute $P(X_q|X_{o_1} = v_1 \land \ldots \land X_{o_j} = v_j)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- ▶ For each of the other variables $X_{s_i} \in \{X_{s_1}, \dots, X_{s_k}\}$, sum out X_{s_i}
- Multiply the remaining factors.
- ▶ Normalize by dividing the resulting factor $f(X_q)$ by $\sum_{X_q} f(X_q)$.

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- Define factors. Manipulate factors using operations restrict, sum out, multiply and normalize.
- Compute a prior or a posterior probability given a Bayesian network.
- Describe/trace/implement the variable elimination algorithm for calculating a prior or a posterior probability given a Bayesian network.