# **Inferences in Bayesian Networks**

Alice Gao Lecture 12

Based on work by K. Leyton-Brown, K. Larson, and P. van Beek



Learning Goals

A Query for the Holmes Scenario

The Variable Elimination Algorithm

Revisiting the Learning goals

# Learning Goals

By the end of the lecture, you should be able to

- Define factors. Manipulate factors using operations restrict, sum out, multiply and normalize.
- Compute a prior or a posterior probability given a Bayesian network.
- Describe/trace/implement the variable elimination algorithm for calculating a prior or a posterior probability given a Bayesian network.

A Bayesian Network for the Holmes Scenario



What is the probability that a burglary is happening given that Dr. Watson and Mrs. Gibbon both call?

 $P(B|W \wedge G)$ 

- Query variables: B
- Evidence variables: W and G
- Hidden variables: E and A (Let's drop Radio.)

What is the probability that a burglary is happening given that Dr. Watson and Mrs. Gibbon both call?

$$P(B|W \wedge G) = \frac{P(B \wedge W \wedge G)}{P(B \wedge W \wedge G) + P(\neg B \wedge W \wedge G)}$$

Answering this question require computing two joint probabilities. Let's compute the first one  $P(B \land W \land G)$ .

### Number of operations

How many addition and multiplication operations do we need to perform to evaluate the following expression?

$$\sum_{e \in \{t,f\}} \sum_{a \in \{t,f\}} \sum_{r \in \{t,f\}} P(B=t)P(E=e)P(A=a|B=t \land E=e)$$
$$P(R=r|E=e)P(G=t|A=a)P(W=t|A=a)$$

- (A) Less than 10
- (B) 10-25
- (C) 26-40
- (D) 41-55
- (E) More than 55

# Number of operations

How many addition and multiplication operations do we need to perform to evaluate the following expression?

$$P(B = t \land W = t \land G = t)$$
  
=  $P(B = t) \sum_{a \in \{t, f\}} P(G = t | A = a) P(W = t | A = a)$   
$$\sum_{e \in \{t, f\}} P(E = e) P(A = a | B = t \land E = e)$$

- (A) Less than 10
- (B) 10-25
- (C) 26-40
- (D) 41-55
- (E) More than 55

#### Factors

- A factor is a representation of a function from a tuple of random variables into a number.
- We will write factor f on variables  $X_1, \ldots, X_j$  as  $f(X_1, \ldots, X_j)$ .
- A factor denotes a distribution over the given tuple of variables in some (unspecified) context
  - e.g.,  $P(X_1, X_2)$  is a factor  $f(X_1, X_2)$
  - ▶ e.g., P(X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub> = v<sub>3</sub>) is a factor f(X<sub>1</sub>, X<sub>2</sub>)
  - e.g.,  $P(X_1, X_3 = v_3 | X_2)$  is a factor  $f(X_1, X_2)$

#### Restrict a factor

- Our first operation: we can assign values to some variables of a factor.
  - $f(X_1 = v_1, X_2, \dots, X_j)$ , where  $v_1 \in dom(X_1)$ , is a factor on  $X_2, \dots, X_j$ .
  - f(X<sub>1</sub> = v<sub>1</sub>, X<sub>2</sub> = v<sub>2</sub>,..., X<sub>j</sub> = v<sub>j</sub>) is a number that is the value of f when each X<sub>i</sub> has value v<sub>i</sub>.

Example: Restrict a factor



r(X=t, Y=f, Z=f) = 0.8

Example: Restrict a factor

What is  $f_1(A = t, B)$ ?

|                         | Α | В | val |
|-------------------------|---|---|-----|
|                         | t | t | 0.1 |
| <i>f</i> <sub>1</sub> : | t | f | 0.9 |
|                         | f | t | 0.2 |
|                         | f | f | 0.8 |

Our second operation: we can sum out a variable, say  $X_1$  with domain  $\{v_1, \ldots, v_k\}$ , from factor  $f(X_1, \ldots, X_j)$ , resulting in a factor on  $X_2, \ldots, X_j$  defined by:

$$(\sum_{X_1} f)(X_2, ..., X_j) = f(X_1 = v_1, ..., X_j) + \dots + f(X_1 = v_k, ..., X_j)$$

### Example: Sum out variables

|     | Α | В | С | val  |
|-----|---|---|---|------|
|     | t | t | t | 0.03 |
|     | t | t | f | 0.07 |
|     | t | f | t | 0.54 |
| f3: | t | f | f | 0.36 |
|     | f | t | t | 0.06 |
|     | f | t | f | 0.14 |
|     | f | f | t | 0.48 |
|     | f | f | f | 0.32 |

|                  | A | С | val  |
|------------------|---|---|------|
|                  | t | t | 0.57 |
| $\sum_{B} f_3$ : | t | f | 0.43 |
|                  | f | t | 0.54 |
|                  | f | f | 0.46 |

Example: Sum out variables

#### What is $\sum_C f_3$ ?

|     | A | В | С | val  |
|-----|---|---|---|------|
|     | t | t | t | 0.03 |
|     | t | t | f | 0.07 |
|     | t | f | t | 0.54 |
| f3: | t | f | f | 0.36 |
|     | f | t | t | 0.06 |
|     | f | t | f | 0.14 |
|     | f | f | t | 0.48 |
|     | f | f | f | 0.32 |

# Multiplying factors

- Our third operation: factors can be multiplied together.
- ► The product of factor f<sub>1</sub>(X, Y) and f<sub>2</sub>(Y, Z), where Y are the variables in common, is the factor (f<sub>1</sub> × f<sub>2</sub>)(X, Y, Z) defined by:

$$(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y})f_2(\overline{Y}, \overline{Z}).$$

► Note: it's defined on all X, Y, Z triples, obtained by multiplying together the appropriate pair of entries from f<sub>1</sub> and f<sub>2</sub>. Example: Multiplying factors



|                  | В | С | val |
|------------------|---|---|-----|
|                  | t | t | 0.3 |
| f <sub>2</sub> : | t | f | 0.7 |
|                  | f | t | 0.6 |
|                  | f | f | 0.4 |

|       |   |                         | t |
|-------|---|-------------------------|---|
| $f_1$ | × | <i>f</i> <sub>2</sub> : | t |
|       |   |                         | f |

|         | A | В | C | val  |
|---------|---|---|---|------|
|         | t | t | t | 0.03 |
|         | t | t | f | 0.07 |
|         | t | f | t | 0.54 |
| $f_2$ : | t | f | f | 0.36 |
|         | f | t | t | 0.06 |
|         | f | t | f | 0.14 |
|         | f | f | t | 0.48 |
|         | f | f | f | 0.32 |
|         |   |   |   |      |

 $\overline{}$ 

н

Example: Multiplying factors

What is  $f_1 \times f_2$ ?

|                         | Α | В | val |
|-------------------------|---|---|-----|
|                         | t | t | 0.1 |
| <i>f</i> <sub>1</sub> : | t | f | 0.9 |
|                         | f | t | 0.2 |
|                         | f | f | 0.8 |
|                         |   |   |     |
|                         | С | В | val |
|                         | t | t | 0.3 |
| <i>f</i> <sub>2</sub> : | t | f | 0.7 |
|                         | f | t | 0.6 |
|                         | f | f | 0.4 |

# Variable elimination algorithm

To compute  $P(X_q|X_{o_1} = v_1 \land \ldots \land X_{o_j} = v_j)$ :

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- ▶ For each of the other variables  $X_{s_i} \in \{X_{s_1}, \dots, X_{s_k}\}$ , sum out  $X_{s_i}$
- Multiply the remaining factors.
- ▶ Normalize by dividing the resulting factor  $f(X_q)$  by  $\sum_{X_q} f(X_q)$ .

# Revisiting the Learning Goals

By the end of the lecture, you should be able to

- Define factors. Manipulate factors using operations restrict, sum out, multiply and normalize.
- Compute a prior or a posterior probability given a Bayesian network.
- Describe/trace/implement the variable elimination algorithm for calculating a prior or a posterior probability given a Bayesian network.