The product rule:

$$
\begin{aligned}
& P(A=\text { true } \wedge B=\text { true })=P(A=\text { true } \mid B=\text { true }) P(B=\text { true }) \\
& P(A=\text { true } \wedge B=\text { false })=P(A=\text { true } \mid B=\text { false }) P(B=\text { false }) \\
& P(A=\text { false } \wedge B=\text { true })=P(A=\text { false } \mid B=\text { true }) P(B=\text { true }) \\
& P(A=\text { false } \wedge B=\text { false })=P(A=\text { false } \mid B=\text { false }) P(B=\text { false })
\end{aligned}
$$

The product rule in our shorthand notation:

$$
\begin{aligned}
& P(A \wedge B)=P(A \mid B) P(B) \\
& P(A \wedge \neg B)=P(A \mid \neg B) P(\neg B) \\
& P(\neg A \wedge B)=P(\neg A \mid B) P(B) \\
& P(\neg A \wedge \neg B)=P(\neg A \mid \neg B) P(\neg B)
\end{aligned}
$$

The product rule using the comma notation:

$$
P(A, B)=P(A \mid B) P(B)
$$

When in doubt, always explicitly write out each random variable and the value it takes.

