Examples of The Arc Consistency Algorithm

Alice Gao

Fall 2018

1 Forward Checking

The starting domains: $x_0 = 0, dom(x_1) = \{0, 1, 2, 3\}, dom(x_2) = \{0, 1, 2, 3\}, dom(x_3) = \{0, 1, 2, 3\}.$

We have just assigned $x_0 = 0$. This automatically eliminates all other values in $dom(x_0)$. In forward checking, we never add new constraints to the set.

Since we've just assigned a value to x_0 , we will add every constraint that involves x_0 to the set for the other variable in the constraint.

The starting set of constraints:

 $(x_1, x_0 \neq x_1), (x_1, |x_0 - x_1| \neq 1), (x_2, x_0 \neq x_2), (x_2, |x_0 - x_2| \neq 2), (x_3, x_0 \neq x_3), (x_3, |x_0 - x_3| \neq 3)$

1. Remove $(x_1, x_0 \neq x_1)$. Remove 0 from $dom(x_1)$.

The resulting domains are $x_0 = 0$, $dom(x_1) = \{1, 2, 3\}$, $dom(x_2) = \{0, 1, 2, 3\}$, $dom(x_3) = \{0, 1, 2, 3\}$.

2. Remove $(x_1, |x_0 - x_1| \neq 1)$.

Remove 1 from $dom(x_1)$.

The resulting domains are $x_0 = 0$, $dom(x_1) = \{2, 3\}$, $dom(x_2) = \{0, 1, 2, 3\}$, $dom(x_3) = \{0, 1, 2, 3\}$.

3. Remove $(x_2, x_0 \neq x_2)$.

Remove 0 from $dom(x_2)$.

The resulting domains are $x_0 = 0$, $dom(x_1) = \{2, 3\}$, $dom(x_2) = \{1, 2, 3\}$, $dom(x_3) = \{0, 1, 2, 3\}$.

4. Remove $(x_2, |x_0 - x_2| \neq 2)$. Remove 2 from $dom(x_2)$.

The resulting domains are $x_0 = 0$, $dom(x_1) = \{2,3\}$, $dom(x_2) = \{1,3\}$, $dom(x_3) = \{0,1,2,3\}$.

5. Remove $((x_3, x_0 \neq x_3))$.

Remove 0 from $dom(x_3)$.

The resulting domains are $x_0 = 0$, $dom(x_1) = \{2, 3\}$, $dom(x_2) = \{1, 3\}$, $dom(x_3) = \{1, 2, 3\}$.

Remove (x₃, |x₀ − x₃| ≠ 3).
Remove 3 from dom(x₃).

The resulting domains are $x_0 = 0$, $dom(x_1) = \{2,3\}$, $dom(x_2) = \{1,3\}$, $dom(x_3) = \{1,2\}$.

2 Maintaining Arc Consistency

Maintaining Arc Consistency is essentially running the AC-3 algorithm on the CSP after the assignment. Consider the same example again.

The starting domains: $x_0 = 0, dom(x_1) = \{0, 1, 2, 3\}, dom(x_2) = \{0, 1, 2, 3\}, dom(x_3) = \{0, 1, 2, 3\}.$

We have just assigned $x_0 = 0$. This automatically eliminates all other values in $dom(x_0)$.

Again, we start by adding every constraint that involves x_0 to the set for the other variable in the constraint.

The starting set of constraints:

 $(x_1, x_0 \neq x_1), (x_1, |x_0 - x_1| \neq 1), (x_2, x_0 \neq x_2), (x_2, |x_0 - x_2| \neq 2), (x_3, x_0 \neq x_3), (x_3, |x_0 - x_3| \neq 3)$

1. Remove $(x_1, x_0 \neq x_1)$.

Remove 0 from $dom(x_1)$.

Add the following constraints to the set.

 $(x_2, x_1 \neq x_2), (x_2, |x_1 - x_2| \neq 1, (x_3, x_1 \neq x_3), (x_3, |x_1 - x_3| \neq 2)$

The resulting domains are $x_0 = 0$, $dom(x_1) = \{1, 2, 3\}$, $dom(x_2) = \{0, 1, 2, 3\}$, $dom(x_3) = \{0, 1, 2, 3\}$.

The resulting set of constraints is $(x_1, |x_0 - x_1| \neq 1), (x_2, x_0 \neq x_2), (x_2, |x_0 - x_2| \neq 2), (x_3, x_0 \neq x_3), (x_3, |x_0 - x_3| \neq 3), (x_2, x_1 \neq x_2), (x_2, |x_1 - x_2| \neq 1, (x_3, x_1 \neq x_3), (x_3, |x_1 - x_3| \neq 2)$

(Technically, we should add back constraints for x_0 as well. However, since we've just assigned a value to x_0 , we will omit all such constraints.)

2. Remove $(x_1, |x_0 - x_1| \neq 1)$.

Remove 1 from $dom(x_1)$.

Add no constraint to the set.

The resulting domains are $x_0 = 0$, $dom(x_1) = \{2, 3\}$, $dom(x_2) = \{0, 1, 2, 3\}$, $dom(x_3) = \{0, 1, 2, 3\}$.

The resulting set of constraints is $(x_2, x_0 \neq x_2), (x_2, |x_0 - x_2| \neq 2), (x_3, x_0 \neq x_3), (x_3, |x_0 - x_3| \neq 3), (x_2, x_1 \neq x_2), (x_2, |x_1 - x_2| \neq 1, (x_3, x_1 \neq x_3), (x_3, |x_1 - x_3| \neq 2)$

3. Remove $(x_2, x_0 \neq x_2)$.

Remove 0 from $dom(x_2)$.

Add the following constraints to the set.

 $(x_1, x_1 \neq x_2), (x_1, |x_1 - x_2| \neq 1), (x_3, x_2 \neq x_3), (x_3, |x_2 - x_3| \neq 1)$

The resulting domains $x_0 = 0, dom(x_1) = \{2, 3\}, dom(x_2) = \{1, 2, 3\}, dom(x_3) = \{0, 1, 2, 3\}.$

The resulting set of constraints is $(x_2, |x_0 - x_2| \neq 2), (x_3, x_0 \neq x_3), (x_3, |x_0 - x_3| \neq 3), (x_2, x_1 \neq x_2), (x_2, |x_1 - x_2| \neq 1, (x_3, x_1 \neq x_3), (x_3, |x_1 - x_3| \neq 2), (x_1, x_1 \neq x_2), (x_1, |x_1 - x_2| \neq 1), (x_3, x_2 \neq x_3), (x_3, |x_2 - x_3| \neq 1)$

4. Remove $(x_2, |x_0 - x_2| \neq 2)$.

Remove 2 from $dom(x_2)$.

Add no constraint to the set.

The resulting domains are $x_0 = 0$, $dom(x_1) = \{2,3\}$, $dom(x_2) = \{1,3\}$, $dom(x_3) = \{0,1,2,3\}$.

The resulting set of constraints is $(x_3, x_0 \neq x_3), (x_3, |x_0 - x_3| \neq 3), (x_2, x_1 \neq x_2), (x_2, |x_1 - x_2| \neq 1, (x_3, x_1 \neq x_3), (x_3, |x_1 - x_3| \neq 2), (x_1, x_1 \neq x_2), (x_1, |x_1 - x_2| \neq 1), (x_3, x_2 \neq x_3), (x_3, |x_2 - x_3| \neq 1)$

5. Remove $((x_3, x_0 \neq x_3))$.

Remove 0 from $dom(x_3)$.

Add the following constraints to the set. $(x_1, x_1 \neq x_3), (x_1, |x_1 - x_3| \neq 2), (x_2, x_2 \neq x_3), (x_2, |x_2 - x_3| \neq 1)$

The resulting domains are $x_0 = 0$, $dom(x_1) = \{2, 3\}$, $dom(x_2) = \{1, 3\}$, $dom(x_3) = \{1, 2, 3\}$.

The resulting set of constraints is $(x_3, |x_0 - x_3| \neq 3), (x_2, x_1 \neq x_2), (x_2, |x_1 - x_2| \neq 1, (x_3, x_1 \neq x_3), (x_3, |x_1 - x_3| \neq 2), (x_1, x_1 \neq x_2), (x_1, |x_1 - x_2| \neq 1), (x_3, x_2 \neq x_3), (x_3, |x_2 - x_3| \neq 1), (x_1, x_1 \neq x_3), (x_1, |x_1 - x_3| \neq 2), (x_2, x_2 \neq x_3), (x_2, |x_2 - x_3| \neq 1)$

6. Remove $(x_3, |x_0 - x_3| \neq 3)$.

Remove 3 from $dom(x_3)$.

Add no constraint to the set.

The resulting domains are $x_0 = 0$, $dom(x_1) = \{2, 3\}$, $dom(x_2) = \{1, 3\}$, $dom(x_3) = \{1, 2\}$.

The resulting set of constraints is $(x_2, x_1 \neq x_2), (x_2, |x_1 - x_2| \neq 1, (x_3, x_1 \neq x_3), (x_3, |x_1 - x_3| \neq 2), (x_1, x_1 \neq x_2), (x_1, |x_1 - x_2| \neq 1), (x_3, x_2 \neq x_3), (x_3, |x_2 - x_3| \neq 1), (x_1, x_1 \neq x_3), (x_1, |x_1 - x_3| \neq 2), (x_2, x_2 \neq x_3), (x_2, |x_2 - x_3| \neq 1)$

7. Remove $(x_2, x_1 \neq x_2)$.

Do nothing.

The resulting domains are $x_0 = 0$, $dom(x_1) = \{2, 3\}$, $dom(x_2) = \{1, 3\}$, $dom(x_3) = \{1, 2\}$.

The resulting set of constraints is $(x_2, |x_1 - x_2| \neq 1, (x_3, x_1 \neq x_3), (x_3, |x_1 - x_3| \neq 2), (x_1, x_1 \neq x_2), (x_1, |x_1 - x_2| \neq 1), (x_3, x_2 \neq x_3), (x_3, |x_2 - x_3| \neq 1), (x_1, x_1 \neq x_3), (x_1, |x_1 - x_3| \neq 2), (x_2, x_2 \neq x_3), (x_2, |x_2 - x_3| \neq 1)$

8. Remove $(x_2, |x_1 - x_2| \neq 1.$

Do nothing.

The resulting domains are $x_0 = 0$, $dom(x_1) = \{2,3\}$, $dom(x_2) = \{1,3\}$, $dom(x_3) = \{1,2\}$.

The resulting set of constraints is $(x_3, x_1 \neq x_3), (x_3, |x_1 - x_3| \neq 2), (x_1, x_1 \neq x_2), (x_1, |x_1 - x_2| \neq 1), (x_3, x_2 \neq x_3), (x_3, |x_2 - x_3| \neq 1), (x_1, x_1 \neq x_3), (x_1, |x_1 - x_3| \neq 2), (x_2, x_2 \neq x_3), (x_2, |x_2 - x_3| \neq 1)$

9. Remove $(x_3, x_1 \neq x_3)$.

Do nothing.

The resulting domains are $x_0 = 0$, $dom(x_1) = \{2, 3\}$, $dom(x_2) = \{1, 3\}$, $dom(x_3) = \{1, 2\}$.

The resulting set of constraints is $(x_3, |x_1 - x_3| \neq 2), (x_1, x_1 \neq x_2), (x_1, |x_1 - x_2| \neq 1), (x_3, x_2 \neq x_3), (x_3, |x_2 - x_3| \neq 1), (x_1, x_1 \neq x_3), (x_1, |x_1 - x_3| \neq 2), (x_2, x_2 \neq x_3), (x_2, |x_2 - x_3| \neq 1)$

10. Remove $(x_3, |x_1 - x_3| \neq 2)$.

Do nothing.

The resulting domains are $x_0 = 0$, $dom(x_1) = \{2, 3\}$, $dom(x_2) = \{1, 3\}$, $dom(x_3) = \{1, 2\}$.

The resulting set of constraints is $(x_1, x_1 \neq x_2), (x_1, |x_1 - x_2| \neq 1), (x_3, x_2 \neq x_3), (x_3, |x_2 - x_3| \neq 1), (x_1, x_1 \neq x_3), (x_1, |x_1 - x_3| \neq 2), (x_2, x_2 \neq x_3), (x_2, |x_2 - x_3| \neq 1)$

11. Remove $(x_1, x_1 \neq x_2)$.

Do nothing.

The resulting domains are $x_0 = 0$, $dom(x_1) = \{2,3\}$, $dom(x_2) = \{1,3\}$, $dom(x_3) = \{1,2\}$.

The resulting set of constraints is $(x_1, |x_1 - x_2| \neq 1), (x_3, x_2 \neq x_3), (x_3, |x_2 - x_3| \neq 1), (x_1, x_1 \neq x_3), (x_1, |x_1 - x_3| \neq 2), (x_2, x_2 \neq x_3), (x_2, |x_2 - x_3| \neq 1)$

- 12. Remove $(x_1, |x_1 x_2| \neq 1)$.
 - Remove 2 from $dom(x_1)$.

Add the following constraints to the set.

 $(x_2, x_1 \neq x_2), (x_3, x_1 \neq x_3), (x_3, |x_1 - x_3| \neq 2).$

The resulting domains are $x_0 = 0$, $dom(x_1) = \{3\}$, $dom(x_2) = \{1,3\}$, $dom(x_3) = \{1,2\}$. The resulting set of constraints is $(x_3, x_2 \neq x_3)$, $(x_3, |x_2 - x_3| \neq 1)$, $(x_1, x_1 \neq x_3)$, $(x_1, |x_1 - x_3| \neq 2)$, $(x_2, x_2 \neq x_3)$, $(x_2, |x_2 - x_3| \neq 1)$, $(x_2, x_1 \neq x_2)$, $(x_3, x_1 \neq x_3)$, $(x_3, |x_1 - x_3| \neq 2)$.

13. Remove $(x_3, x_2 \neq x_3)$.

Do nothing.

The resulting domains are $x_0 = 0$, $dom(x_1) = \{3\}$, $dom(x_2) = \{1,3\}$, $dom(x_3) = \{1,2\}$. The resulting set of constraints is $(x_3, |x_2 - x_3| \neq 1)$, $(x_1, x_1 \neq x_3)$, $(x_1, |x_1 - x_3| \neq 2)$, $(x_2, x_2 \neq x_3)$, $(x_2, |x_2 - x_3| \neq 1)$, $(x_2, x_1 \neq x_2)$, $(x_3, x_1 \neq x_3)$, $(x_3, |x_1 - x_3| \neq 2)$.

- 14. Remove $(x_3, |x_2 x_3| \neq 1)$.
 - Remove 2 from $dom(x_3)$.

Add the following constraints to the set.

 $(x_2, x_2 \neq x_3)$

The resulting domains are $x_0 = 0$, $dom(x_1) = \{3\}$, $dom(x_2) = \{1, 3\}$, $dom(x_3) = \{1\}$. The resulting set of constraints is $(x_1, x_1 \neq x_3)$, $(x_1, |x_1 - x_3| \neq 2)$, $(x_2, x_2 \neq x_3)$, $(x_2, |x_2 - x_3| \neq 1)$, $(x_2, x_1 \neq x_2)$, $(x_3, x_1 \neq x_3)$, $(x_3, |x_1 - x_3| \neq 2)$, $(x_2, x_2 \neq x_3)$. 15. Remove $(x_1, x_1 \neq x_3)$.

Do nothing.

The resulting domains are $x_0 = 0$, $dom(x_1) = \{3\}$, $dom(x_2) = \{1,3\}$, $dom(x_3) = \{1\}$. The resulting set of constraints is $(x_1, |x_1 - x_3| \neq 2), (x_2, x_2 \neq x_3), (x_2, |x_2 - x_3| \neq 1), (x_2, x_1 \neq x_2), (x_3, x_1 \neq x_3), (x_3, |x_1 - x_3| \neq 2), (x_2, x_2 \neq x_3).$

16. Remove $(x_1, |x_1 - x_3| \neq 2)$. Remove 3 from $dom(x_1)$.

> The resulting domains are $x_0 = 0$, $dom(x_1) = \{\}$, $dom(x_2) = \{1, 3\}$, $dom(x_3) = \{1\}$. The domain of x_1 is empty. No solution! Backtrack!