Examples of The Arc Consistency Algorithm

Alice Gao

Fall 2018

1 Forward Checking

The starting domains: $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{0,1,2,3\}, \operatorname{dom}\left(x_{2}\right)=\{0,1,2,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{0,1,2,3\}$.

We have just assigned $x_{0}=0$. This automatically eliminates all other values in $\operatorname{dom}\left(x_{0}\right)$. In forward checking, we never add new constraints to the set.

Since we've just assigned a value to x_{0}, we will add every constraint that involves x_{0} to the set for the other variable in the constraint.

The starting set of constraints:
$\left(x_{1}, x_{0} \neq x_{1}\right),\left(x_{1},\left|x_{0}-x_{1}\right| \neq 1\right),\left(x_{2}, x_{0} \neq x_{2}\right),\left(x_{2},\left|x_{0}-x_{2}\right| \neq 2\right),\left(x_{3}, x_{0} \neq x_{3}\right),\left(x_{3},\left|x_{0}-x_{3}\right| \neq\right.$ 3)

1. Remove $\left(x_{1}, x_{0} \neq x_{1}\right)$.

Remove 0 from $\operatorname{dom}\left(x_{1}\right)$.
The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{1,2,3\}, \operatorname{dom}\left(x_{2}\right)=\{0,1,2,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{0,1,2,3\}$.
2. Remove $\left(x_{1},\left|x_{0}-x_{1}\right| \neq 1\right)$.

Remove 1 from $\operatorname{dom}\left(x_{1}\right)$.
The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{2,3\}, \operatorname{dom}\left(x_{2}\right)=\{0,1,2,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{0,1,2,3\}$.
3. Remove $\left(x_{2}, x_{0} \neq x_{2}\right)$.

Remove 0 from $\operatorname{dom}\left(x_{2}\right)$.
The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{2,3\}, \operatorname{dom}\left(x_{2}\right)=\{1,2,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{0,1,2,3\}$.
4. Remove $\left(x_{2},\left|x_{0}-x_{2}\right| \neq 2\right)$.

Remove 2 from $\operatorname{dom}\left(x_{2}\right)$.
The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{2,3\}, \operatorname{dom}\left(x_{2}\right)=\{1,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{0,1,2,3\}$.
5. Remove $\left(\left(x_{3}, x_{0} \neq x_{3}\right)\right.$.

Remove 0 from $\operatorname{dom}\left(x_{3}\right)$.
The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{2,3\}, \operatorname{dom}\left(x_{2}\right)=\{1,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{1,2,3\}$.
6. Remove $\left(x_{3},\left|x_{0}-x_{3}\right| \neq 3\right)$.

Remove 3 from $\operatorname{dom}\left(x_{3}\right)$.
The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{2,3\}, \operatorname{dom}\left(x_{2}\right)=\{1,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{1,2\}$.

2 Maintaining Arc Consistency

Maintaining Arc Consistency is essentially running the AC-3 algorithm on the CSP after the assignment. Consider the same example again.

The starting domains: $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{0,1,2,3\}, \operatorname{dom}\left(x_{2}\right)=\{0,1,2,3\}$, $\operatorname{dom}\left(x_{3}\right)=$ $\{0,1,2,3\}$.

We have just assigned $x_{0}=0$. This automatically eliminates all other values in $\operatorname{dom}\left(x_{0}\right)$.
Again, we start by adding every constraint that involves x_{0} to the set for the other variable in the constraint.

The starting set of constraints:
$\left(x_{1}, x_{0} \neq x_{1}\right),\left(x_{1},\left|x_{0}-x_{1}\right| \neq 1\right),\left(x_{2}, x_{0} \neq x_{2}\right),\left(x_{2},\left|x_{0}-x_{2}\right| \neq 2\right),\left(x_{3}, x_{0} \neq x_{3}\right),\left(x_{3},\left|x_{0}-x_{3}\right| \neq\right.$ 3)

1. Remove $\left(x_{1}, x_{0} \neq x_{1}\right)$.

Remove 0 from $\operatorname{dom}\left(x_{1}\right)$.
Add the following constraints to the set.
$\left(x_{2}, x_{1} \neq x_{2}\right),\left(x_{2},\left|x_{1}-x_{2}\right| \neq 1,\left(x_{3}, x_{1} \neq x_{3}\right),\left(x_{3},\left|x_{1}-x_{3}\right| \neq 2\right)\right.$
The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{1,2,3\}, \operatorname{dom}\left(x_{2}\right)=\{0,1,2,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{0,1,2,3\}$.
The resulting set of constraints is $\left(x_{1},\left|x_{0}-x_{1}\right| \neq 1\right),\left(x_{2}, x_{0} \neq x_{2}\right),\left(x_{2},\left|x_{0}-x_{2}\right| \neq\right.$ $2),\left(x_{3}, x_{0} \neq x_{3}\right),\left(x_{3},\left|x_{0}-x_{3}\right| \neq 3\right),\left(x_{2}, x_{1} \neq x_{2}\right),\left(x_{2},\left|x_{1}-x_{2}\right| \neq 1,\left(x_{3}, x_{1} \neq x_{3}\right),\left(x_{3}, \mid x_{1}-\right.\right.$ $\left.x_{3} \mid \neq 2\right)$
(Technically, we should add back constraints for x_{0} as well. However, since we've just assigned a value to x_{0}, we will omit all such constraints.)
2. Remove $\left(x_{1},\left|x_{0}-x_{1}\right| \neq 1\right)$.

Remove 1 from $\operatorname{dom}\left(x_{1}\right)$.
Add no constraint to the set.

The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{2,3\}, \operatorname{dom}\left(x_{2}\right)=\{0,1,2,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{0,1,2,3\}$.
The resulting set of constraints is $\left(x_{2}, x_{0} \neq x_{2}\right),\left(x_{2},\left|x_{0}-x_{2}\right| \neq 2\right),\left(x_{3}, x_{0} \neq x_{3}\right),\left(x_{3}, \mid x_{0}-\right.$ $\left.x_{3} \mid \neq 3\right),\left(x_{2}, x_{1} \neq x_{2}\right),\left(x_{2},\left|x_{1}-x_{2}\right| \neq 1,\left(x_{3}, x_{1} \neq x_{3}\right),\left(x_{3},\left|x_{1}-x_{3}\right| \neq 2\right)\right.$
3. Remove $\left(x_{2}, x_{0} \neq x_{2}\right)$.

Remove 0 from $\operatorname{dom}\left(x_{2}\right)$.
Add the following constraints to the set.
$\left(x_{1}, x_{1} \neq x_{2}\right),\left(x_{1},\left|x_{1}-x_{2}\right| \neq 1\right),\left(x_{3}, x_{2} \neq x_{3}\right),\left(x_{3},\left|x_{2}-x_{3}\right| \neq 1\right)$
The resulting domains $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{2,3\}, \operatorname{dom}\left(x_{2}\right)=\{1,2,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{0,1,2,3\}$.
The resulting set of constraints is $\left(x_{2},\left|x_{0}-x_{2}\right| \neq 2\right),\left(x_{3}, x_{0} \neq x_{3}\right),\left(x_{3},\left|x_{0}-x_{3}\right| \neq\right.$ $3),\left(x_{2}, x_{1} \neq x_{2}\right),\left(x_{2},\left|x_{1}-x_{2}\right| \neq 1,\left(x_{3}, x_{1} \neq x_{3}\right),\left(x_{3},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{1}, x_{1} \neq x_{2}\right),\left(x_{1}, \mid x_{1}-\right.\right.$ $\left.x_{2} \mid \neq 1\right),\left(x_{3}, x_{2} \neq x_{3}\right),\left(x_{3},\left|x_{2}-x_{3}\right| \neq 1\right)$
4. Remove $\left(x_{2},\left|x_{0}-x_{2}\right| \neq 2\right)$.

Remove 2 from $\operatorname{dom}\left(x_{2}\right)$.
Add no constraint to the set.

The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{2,3\}, \operatorname{dom}\left(x_{2}\right)=\{1,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{0,1,2,3\}$.
The resulting set of constraints is $\left(x_{3}, x_{0} \neq x_{3}\right),\left(x_{3},\left|x_{0}-x_{3}\right| \neq 3\right),\left(x_{2}, x_{1} \neq x_{2}\right),\left(x_{2}, \mid x_{1}-\right.$ $x_{2} \mid \neq 1,\left(x_{3}, x_{1} \neq x_{3}\right),\left(x_{3},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{1}, x_{1} \neq x_{2}\right),\left(x_{1},\left|x_{1}-x_{2}\right| \neq 1\right),\left(x_{3}, x_{2} \neq\right.$ $\left.x_{3}\right),\left(x_{3},\left|x_{2}-x_{3}\right| \neq 1\right)$
5. Remove $\left(\left(x_{3}, x_{0} \neq x_{3}\right)\right.$.

Remove 0 from $\operatorname{dom}\left(x_{3}\right)$.
Add the following constraints to the set. $\left(x_{1}, x_{1} \neq x_{3}\right),\left(x_{1},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{2}, x_{2} \neq\right.$ $\left.x_{3}\right),\left(x_{2},\left|x_{2}-x_{3}\right| \neq 1\right)$

The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{2,3\}, \operatorname{dom}\left(x_{2}\right)=\{1,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{1,2,3\}$.
The resulting set of constraints is $\left(x_{3},\left|x_{0}-x_{3}\right| \neq 3\right),\left(x_{2}, x_{1} \neq x_{2}\right),\left(x_{2},\left|x_{1}-x_{2}\right| \neq\right.$ $1,\left(x_{3}, x_{1} \neq x_{3}\right),\left(x_{3},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{1}, x_{1} \neq x_{2}\right),\left(x_{1},\left|x_{1}-x_{2}\right| \neq 1\right),\left(x_{3}, x_{2} \neq x_{3}\right),\left(x_{3}, \mid x_{2}-\right.$ $\left.x_{3} \mid \neq 1\right),\left(x_{1}, x_{1} \neq x_{3}\right),\left(x_{1},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{2}, x_{2} \neq x_{3}\right),\left(x_{2},\left|x_{2}-x_{3}\right| \neq 1\right)$
6. Remove $\left(x_{3},\left|x_{0}-x_{3}\right| \neq 3\right)$.

Remove 3 from $\operatorname{dom}\left(x_{3}\right)$.
Add no constraint to the set.

The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{2,3\}, \operatorname{dom}\left(x_{2}\right)=\{1,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{1,2\}$.
The resulting set of constraints is $\left(x_{2}, x_{1} \neq x_{2}\right),\left(x_{2},\left|x_{1}-x_{2}\right| \neq 1,\left(x_{3}, x_{1} \neq x_{3}\right),\left(x_{3}, \mid x_{1}-\right.\right.$ $\left.x_{3} \mid \neq 2\right),\left(x_{1}, x_{1} \neq x_{2}\right),\left(x_{1},\left|x_{1}-x_{2}\right| \neq 1\right),\left(x_{3}, x_{2} \neq x_{3}\right),\left(x_{3},\left|x_{2}-x_{3}\right| \neq 1\right),\left(x_{1}, x_{1} \neq\right.$ $\left.x_{3}\right),\left(x_{1},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{2}, x_{2} \neq x_{3}\right),\left(x_{2},\left|x_{2}-x_{3}\right| \neq 1\right)$
7. Remove $\left(x_{2}, x_{1} \neq x_{2}\right)$.

Do nothing.

The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{2,3\}, \operatorname{dom}\left(x_{2}\right)=\{1,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{1,2\}$.
The resulting set of constraints is $\left(x_{2},\left|x_{1}-x_{2}\right| \neq 1,\left(x_{3}, x_{1} \neq x_{3}\right),\left(x_{3},\left|x_{1}-x_{3}\right| \neq\right.\right.$ $2),\left(x_{1}, x_{1} \neq x_{2}\right),\left(x_{1},\left|x_{1}-x_{2}\right| \neq 1\right),\left(x_{3}, x_{2} \neq x_{3}\right),\left(x_{3},\left|x_{2}-x_{3}\right| \neq 1\right),\left(x_{1}, x_{1} \neq x_{3}\right),\left(x_{1}, \mid x_{1}-\right.$ $\left.x_{3} \mid \neq 2\right),\left(x_{2}, x_{2} \neq x_{3}\right),\left(x_{2},\left|x_{2}-x_{3}\right| \neq 1\right)$
8. Remove $\left(x_{2},\left|x_{1}-x_{2}\right| \neq 1\right.$.

Do nothing.

The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{2,3\}, \operatorname{dom}\left(x_{2}\right)=\{1,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{1,2\}$.
The resulting set of constraints is $\left(x_{3}, x_{1} \neq x_{3}\right),\left(x_{3},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{1}, x_{1} \neq x_{2}\right),\left(x_{1}, \mid x_{1}-\right.$ $\left.x_{2} \mid \neq 1\right),\left(x_{3}, x_{2} \neq x_{3}\right),\left(x_{3},\left|x_{2}-x_{3}\right| \neq 1\right),\left(x_{1}, x_{1} \neq x_{3}\right),\left(x_{1},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{2}, x_{2} \neq\right.$ $\left.x_{3}\right),\left(x_{2},\left|x_{2}-x_{3}\right| \neq 1\right)$
9. Remove $\left(x_{3}, x_{1} \neq x_{3}\right)$.

Do nothing.
The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{2,3\}, \operatorname{dom}\left(x_{2}\right)=\{1,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{1,2\}$.

The resulting set of constraints is $\left(x_{3},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{1}, x_{1} \neq x_{2}\right),\left(x_{1},\left|x_{1}-x_{2}\right| \neq\right.$ $1),\left(x_{3}, x_{2} \neq x_{3}\right),\left(x_{3},\left|x_{2}-x_{3}\right| \neq 1\right),\left(x_{1}, x_{1} \neq x_{3}\right),\left(x_{1},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{2}, x_{2} \neq x_{3}\right),\left(x_{2}, \mid x_{2}-\right.$ $\left.x_{3} \mid \neq 1\right)$
10. Remove $\left(x_{3},\left|x_{1}-x_{3}\right| \neq 2\right)$.

Do nothing.

The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{2,3\}, \operatorname{dom}\left(x_{2}\right)=\{1,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{1,2\}$.
The resulting set of constraints is $\left(x_{1}, x_{1} \neq x_{2}\right),\left(x_{1},\left|x_{1}-x_{2}\right| \neq 1\right),\left(x_{3}, x_{2} \neq x_{3}\right),\left(x_{3}, \mid x_{2}-\right.$ $\left.x_{3} \mid \neq 1\right),\left(x_{1}, x_{1} \neq x_{3}\right),\left(x_{1},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{2}, x_{2} \neq x_{3}\right),\left(x_{2},\left|x_{2}-x_{3}\right| \neq 1\right)$
11. Remove $\left(x_{1}, x_{1} \neq x_{2}\right)$.

Do nothing.

The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{2,3\}, \operatorname{dom}\left(x_{2}\right)=\{1,3\}, \operatorname{dom}\left(x_{3}\right)=$ $\{1,2\}$.
The resulting set of constraints is $\left(x_{1},\left|x_{1}-x_{2}\right| \neq 1\right),\left(x_{3}, x_{2} \neq x_{3}\right),\left(x_{3},\left|x_{2}-x_{3}\right| \neq\right.$ 1), $\left(x_{1}, x_{1} \neq x_{3}\right),\left(x_{1},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{2}, x_{2} \neq x_{3}\right),\left(x_{2},\left|x_{2}-x_{3}\right| \neq 1\right)$
12. Remove $\left(x_{1},\left|x_{1}-x_{2}\right| \neq 1\right)$.

Remove 2 from $\operatorname{dom}\left(x_{1}\right)$.
Add the following constraints to the set.
$\left(x_{2}, x_{1} \neq x_{2}\right),\left(x_{3}, x_{1} \neq x_{3}\right),\left(x_{3},\left|x_{1}-x_{3}\right| \neq 2\right)$.

The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{3\}, \operatorname{dom}\left(x_{2}\right)=\{1,3\}, \operatorname{dom}\left(x_{3}\right)=\{1,2\}$.
The resulting set of constraints is $\left(x_{3}, x_{2} \neq x_{3}\right),\left(x_{3},\left|x_{2}-x_{3}\right| \neq 1\right),\left(x_{1}, x_{1} \neq x_{3}\right),\left(x_{1}, \mid x_{1}-\right.$ $\left.x_{3} \mid \neq 2\right),\left(x_{2}, x_{2} \neq x_{3}\right),\left(x_{2},\left|x_{2}-x_{3}\right| \neq 1\right),\left(x_{2}, x_{1} \neq x_{2}\right),\left(x_{3}, x_{1} \neq x_{3}\right),\left(x_{3},\left|x_{1}-x_{3}\right| \neq 2\right)$.
13. Remove ($x_{3}, x_{2} \neq x_{3}$).

Do nothing.

The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{3\}, \operatorname{dom}\left(x_{2}\right)=\{1,3\}, \operatorname{dom}\left(x_{3}\right)=\{1,2\}$.
The resulting set of constraints is $\left(x_{3},\left|x_{2}-x_{3}\right| \neq 1\right),\left(x_{1}, x_{1} \neq x_{3}\right),\left(x_{1},\left|x_{1}-x_{3}\right| \neq\right.$ $2),\left(x_{2}, x_{2} \neq x_{3}\right),\left(x_{2},\left|x_{2}-x_{3}\right| \neq 1\right),\left(x_{2}, x_{1} \neq x_{2}\right),\left(x_{3}, x_{1} \neq x_{3}\right),\left(x_{3},\left|x_{1}-x_{3}\right| \neq 2\right)$.
14. Remove ($x_{3},\left|x_{2}-x_{3}\right| \neq 1$).

Remove 2 from $\operatorname{dom}\left(x_{3}\right)$.
Add the following constraints to the set.
$\left(x_{2}, x_{2} \neq x_{3}\right)$

The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{3\}, \operatorname{dom}\left(x_{2}\right)=\{1,3\}, \operatorname{dom}\left(x_{3}\right)=\{1\}$.
The resulting set of constraints is $\left(x_{1}, x_{1} \neq x_{3}\right),\left(x_{1},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{2}, x_{2} \neq x_{3}\right),\left(x_{2}, \mid x_{2}-\right.$ $\left.x_{3} \mid \neq 1\right),\left(x_{2}, x_{1} \neq x_{2}\right),\left(x_{3}, x_{1} \neq x_{3}\right),\left(x_{3},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{2}, x_{2} \neq x_{3}\right)$.
15. Remove $\left(x_{1}, x_{1} \neq x_{3}\right)$.

Do nothing.

The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{3\}, \operatorname{dom}\left(x_{2}\right)=\{1,3\}, \operatorname{dom}\left(x_{3}\right)=\{1\}$.
The resulting set of constraints is $\left(x_{1},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{2}, x_{2} \neq x_{3}\right),\left(x_{2},\left|x_{2}-x_{3}\right| \neq\right.$ $1),\left(x_{2}, x_{1} \neq x_{2}\right),\left(x_{3}, x_{1} \neq x_{3}\right),\left(x_{3},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{2}, x_{2} \neq x_{3}\right)$.
16. Remove $\left(x_{1},\left|x_{1}-x_{3}\right| \neq 2\right)$.

Remove 3 from $\operatorname{dom}\left(x_{1}\right)$.

The resulting domains are $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{ \}, \operatorname{dom}\left(x_{2}\right)=\{1,3\}, \operatorname{dom}\left(x_{3}\right)=\{1\}$.
The domain of x_{1} is empty. No solution! Backtrack!

