Sudoku

	0	1	2	3	4	5	6	7	8
0									
1									
2									
3									
4									
5									
6									
7									
8									

Variables: $x_{i j}$ is the value in row i and column j where i is in $\{0, \ldots, 8\}$ and j is in $\{0, \ldots$, $8\}$.

Domains: If the initial value of $x_{i j}$ is k, then $\operatorname{dom}\left(x_{i j}\right)=\{k\}$. Otherwise, $\operatorname{dom}\left(x_{i j}\right)=\{1, \ldots$, $9\}$.

Also could encode the initial value as a constraint. (Talk about River Crossing.)
Constraints:

- All the numbers in each row are different.

The constraint ' 'All numbers in row 0 are different" can be expressed as follows. alldifferent($\mathrm{X}_{00}, \mathrm{X}_{01}, \mathrm{x}_{02}, \mathrm{X}_{03}, \mathrm{x}_{04}, \mathrm{X}_{05}, \mathrm{X}_{06}, \mathrm{X}_{07}, \mathrm{X}_{08}$)

- All the numbers in each column are different.

The constraint ' 'All numbers in column 0 are different" can be expressed as follows. alldifferent ($\mathrm{x}_{00}, \mathrm{x}_{10}, \mathrm{x}_{20}, \mathrm{x}_{30}, \mathrm{x}_{40}, \mathrm{x}_{50}, \mathrm{x}_{60}, \mathrm{x}_{70}, \mathrm{x}_{80}$)

- All the numbers in each sub-grid are different.

The constraint " All numbers in the top left sub-grid are different" can be expressed as follows.

$$
\text { alldifferent }\left(x_{00}, x_{01}, x_{02}, x_{10}, x_{11}, x_{12}, x_{20}, x_{21}, x_{22}\right)
$$

Convert a row constraint to binary constraints:
$\mathrm{x}_{0 \mathrm{a}} \neq \mathrm{X}_{0 \mathrm{~b}}$, where a and b are in $\{0, \ldots, 8\}$ and $\mathrm{a} \neq \mathrm{b}$.
Convert a row constraint to tertiary constraints:
alldifferent $\left(\mathrm{x}_{0 \mathrm{a}}, \mathrm{x}_{0 \mathrm{~b}}, \mathrm{x}_{0 \mathrm{c}}\right.$) where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in $\{0, \ldots, 8\}$ and a, b, and c are all different.

4-Queens Problem

	0	1	2	3
0				
1				
2				
3				

Variables: $\quad x_{i}$ is the row position of the queen in column i, where i is in $\{0,1,2,3\}$.
Domains: $\operatorname{dom}\left(x_{i}\right)=\{0,1,2,3\}$ for all x_{i}.
Example of a state: 3201

- The first queen is in column 0 and row 3.

	0	1	2	3
0			Q	
1				Q
2		Q		
3	Q			

Constraints: No pair of queens are in the same row or the same diagonal.
As a propositional formula:
$\left(\left(x_{0} \neq x_{2}\right) \wedge\left(\left|x_{0}-x_{2}\right|=2\right)\right)$
General formula:
$\left(\forall i\left(\forall j\left((i \neq j) \rightarrow\left(\left(x_{i} \neq x_{j}\right) \wedge\left(\left|x_{i}-x_{j}\right|=|i-j|\right)\right)\right)\right)\right)$
If i and j are two different columns, then the row positions of the two queens are different and they are not in the same diagonal.

As a table: x_{0} and x_{2} are not in the same row nor in the same diagonal.

X_{0}	X_{2}
0	1
0	3
1	0
1	2
2	1
2	3
3	0
3	2

