Sudoku

	0	1	2	3	4	5	6	7	8
0									
1									
2									
3									
4									
5									
6									
7									
8									

Variables: x_{ij} is the value in row i and column j where i is in $\{0, ..., 8\}$ and j is in $\{0, ..., 8\}$.

Domains: If the initial value of x_{ij} is k, then dom $(x_{ij}) = \{k\}$. Otherwise, dom $(x_{ij}) = \{1, ..., 9\}$.

Also could encode the initial value as a constraint. (Talk about River Crossing.)

Constraints:

• All the numbers in each row are different.

The constraint ``All numbers in row 0 are different'' can be expressed as follows. all different (x_{00} , x_{01} , x_{02} , x_{03} , x_{04} , x_{05} , x_{06} , x_{07} , x_{08})

• All the numbers in each column are different.

The constraint ``All numbers in column 0 are different'' can be expressed as follows. all different(x_{00} , x_{10} , x_{20} , x_{30} , x_{40} , x_{50} , x_{60} , x_{70} , x_{80})

• All the numbers in each sub-grid are different.

The constraint ``All numbers in the top left sub-grid are different" can be expressed as follows.

all different $(x_{00}, x_{01}, x_{02}, x_{10}, x_{11}, x_{12}, x_{20}, x_{21}, x_{22})$

Convert a row constraint to binary constraints: $x_{0a} \neq x_{0b}$, where a and b are in {0, ..., 8} and a \neq b.

Convert a row constraint to tertiary constraints: all different (x_{0a} , x_{0b} , x_{0c}) where a, b, c are in {0, ..., 8} and a, b, and c are all different.

4-Queens Problem

	0	1	2	3
0				
1				
2				
3				

Variables: x_i is the row position of the queen in column i, where i is in {0, 1, 2, 3}.

Domains: $dom(x_i) = \{0, 1, 2, 3\}$ for all x_i .

Example of a state: 3 2 0 1

• The first queen is in column 0 and row 3.

	0	1	2	3
0			Q	
1				Q
2		Q		
3	Q			

Constraints: No pair of queens are in the same row or the same diagonal.

As a propositional formula: $((x_0 \neq x_2) \land (|x_0 - x_2|=2))$

General formula:

 $(\forall i (\forall j ((i \neq j) \rightarrow ((x_i \neq x_j) \land (|x_i - x_j| = |i - j|)))))$

If i and j are two different columns, then the row positions of the two queens are different and they are not in the same diagonal.

CS 486/686 Introduction to Artificial Intelligence Lecture 5 Introduction to Constraint Satisfaction Problems

As a table: x_0 and x_2 are not in the same row nor in the same diagonal.

X 0	X 2
0	1
0	3
1	0
1	2
2	1
2	3
3	0
3	2