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Informed Search

Alice Gao
Lecture 4

Based on work by K. Leyton-Brown, K. Larson, and P. van Beek
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Learning goals

By the end of the lecture, you should be able to
▶ Define/trace/implement informed search algorithms

(with/without cost) (handling cycles and repeated states).
▶ Determine properties of search algorithms: completeness,

optimality, time and space complexity.
▶ Select the most appropriate search algorithms for specific

problems.
▶ Construct admissible heuristics for appropriate problems.

Verify heuristic dominance.
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Properties of Uninformed Search Strategies

Algorithm Complete? Optimal? Time Space
IDS Yes* Yes*** O(bd) O(bd)
DFS Yes** No O(bm) O(bm)

BFS Yes* Yes*** O(bd) O(bd)

* if the branching factor is finite.
** if the graph is finite and does not contain cycles.
*** if all arc costs are the same.
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Informed Search

Domain-specific knowledge
▶ can help people solve hard problems without search.
▶ can help computers find solutions more efficiently.

Informed/Heuristic search
▶ Estimate the cost from a given node to a goal node.
▶ Take into account of the goal when selecting the path to

explore.
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Our goal

▶ Our goal is to find the cheapest path from the start node to a
goal node.

▶ f∗(n):
▶ f∗(n) is impossible to know. Thus, we estimate it.



9/35

Estimating the cost of the optimal path

f(n):

Two functions we can use to construct f(n):
▶ g(n):
▶ h(n):
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The Heuristic Function

Definition (search heuristic)
A search heuristic h(n) is an estimate of the cost of the cheapest
path from node n to a goal node.

▶ h(n) is arbitrary, non-negative, and problem-specific.
▶ If n is a goal node, h(n) = 0.
▶ h(n) must be easy to compute (without search).
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Three New Search Algorithms

Treat the frontier as a priority queue ordered by f(n).
Expand the node with the lowest f(n).
The choice of f determines the search strategy.

Uninformed search algorithm:
▶ Lowest-cost-first search: f(n) = g(n).

Informed search algorithms (that use h(n)):
▶ Greedy search: f(n) = h(n).
▶ A*: f(n) = g(n) + h(n).
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Quiz 1

Alas! Time for Quiz 1!
Good luck!
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Lowest-Cost-First Search (Uniform-Cost Search)

▶ Goal: minimize the cost of the path to node n.
▶ Treat the frontier as a priority queue ordered by f(n) = g(n).
▶ Expand the cheapest node

▶ Complete?
▶ Optimal?
▶ Time complexity: O(b1+⌊C∗/ϵ⌋) where C∗ is the cost of the

optimal path and every arc cost exceeds ϵ > 0.
▶ Space complexity: O(b1+⌊C∗/ϵ⌋) where C∗ is the cost of the

optimal path and every arc cost exceeds ϵ > 0.
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CQ: Is Lowest-Cost-First Search Optimal?

CQ: Is Lowest-Cost-First Search optimal? Assume that every arc
cost exceeds ϵ > 0 and the branching factor b is finite.
(A) Yes
(B) No
(C) Not enough information to tell
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Greedy Search (Best-First Search)

▶ Goal: minimize the estimated cost to the goal.
▶ Treat the frontier as a priority queue ordered by f(n) = h(n).
▶ Try to get as close to the goal as it can.

▶ Complete?
▶ Optimal?
▶ Time complexity: O(bm)

▶ Space complexity: O(bm)
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CQ: Is Greedy Search Complete?

CQ: Does there exist a search problem and a heuristic function
such that Greedy Search is NOT complete on the problem?
(A) Yes
(B) No
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CQ: Is Greedy Search Optimal?

CQ: Does there exist a search problem and a heuristic function
such that Greedy Search is NOT optimal on the problem?
(A) Yes
(B) No
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A* Search

▶ Goal: Minimize the estimated cost of the cheapest path from
the start node to the goal through the current node n.

▶ f(n) = g(n) + h(n)

▶ Complete? Yes, if all arc costs exceed some ϵ > 0 and b is
finite.

▶ Optimal? Yes, if the heuristic is admissible, all arc costs
exceed some ϵ > 0, and b is finite.

▶ Time complexity: O(bm)

▶ Space complexity: O(bm)
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A* is Optimal

The solution found by A* search is optimal if the heuristic h(n) is
admissible.
Definition (admissible heuristic)
A search heuristic h(n) is admissible if it is never an overestimate of
the cost from node n to a goal node. That is, (∀n (h(n) ≤ h∗(n))).

▶ An admissible heuristic is a lower bound on the cost of getting
from node n to the nearest goal node.
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A* is Optimally Efficient

Optimal Efficiency: Among all optimal algorithms that start from
the same start node and use the same heuristic, A* expands the
fewest nodes.

▶ No algorithm with the same information can do better.
▶ Intuition: any algorithm that does not expand all nodes with

f(n) < C∗ run the risk of missing the optimal solution.
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Comparing LCFS, GS and A*

Algorithm Complete? Optimal? Time Space
A*
GS

LCFS
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Iterative Deepening A*

▶ Each iteration is Depth-First Search until a f-value threshold.
▶ A node is not added to the frontier if its f value exceeds the

threshold.
▶ Next iteration sets the new threshold to be the smallest

f-value that exceeded the old threshold.



26/35

Learning Goals

Recap of Uninformed Search

Using Domain Specific Knowledge

Lowest-Cost-First Search

Informed Search Algorithms

Heuristic Functions



27/35

Examples of Heuristic Functions

8-Puzzle:
▶ The number of tiles out of place
▶ The sum of the Manhattan distances of the tiles from their

goal positions
River Crossing:

▶ The number of objects that still need to get to the other side
of the river.
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CQ: Is this heuristic admissible?

CQ: Is the following heuristic for the river crossing problem
admissible?
h(n) = the number of objects that still need to get to
the other side of the river.
(A) Yes
(B) No
(C) Not enough information to tell
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Constructing an Admissible Heuristic

▶ Define a relaxed problem by simplifying or dropping
requirements on the original problem.

▶ Solve the relaxed problem without search.
▶ The cost of the optimal solution to the relaxed problem is an

admissible heuristic for the original problem.
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Constructing an Admissible Heuristic

Example: 8-puzzle: A tile can move from A to B
if A and B are adjacent and B is blank.
Which heuristics can we derive from the relaxed problems below?

▶ Relaxed problem 1: A tile can move from A to B
if A and B are adjacent.

▶ Relaxed problem 2: A tile can move from A to B
if B is blank.

▶ Relaxed problem 3: A tile can move from A to B.
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CQ: Constructing an Admissible Heuristic

CQ: Which heuristics can we derive from the following
relaxed 8-puzzle problem?
Relaxed problem 1: A tile can move from A to B
if A and B are adjacent.
(A) The number of tiles out of place
(B) The sum of the Manhattan distances of the tiles from their

goal positions
(C) Another heuristic not described above
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CQ: Constructing an Admissible Heuristic

CQ: Which heuristics can we derive from the following
relaxed 8-puzzle problem?
Relaxed problem 3: A tile can move from A to B.
(A) The number of tiles out of place
(B) The sum of the Manhattan distances of the tiles from their

goal positions
(C) Another heuristic not described above
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Which Heuristic is Better?

▶ We want a heuristic to be admissible.
▶ We don’t want a heuristic to be close to a constant function.
▶ We want a heuristic to have higher values (close to h∗).
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Dominating Heuristic

Definition (dominating heuristic)
Given heuristics h1(n) and h2(n). h2(n) dominates h1(n) if

▶ (∀n (h2(n) ≥ h1(n))).
▶ (∃n (h2(n) > h1(n))).

Theorem
If h2(n) dominates h1(n), A* using h2 will never expand more
nodes than A* using h1.
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Revisiting the learning goals

By the end of the lecture, you should be able to
▶ Define/trace/implement informed search algorithms

(with/without cost) (handling cycles and repeated states).
▶ Determine properties of search algorithms: completeness,

optimality, time and space complexity.
▶ Select the most appropriate search algorithms for specific

problems.
▶ Construct admissible heuristics for appropriate problems.

Verify heuristic dominance.
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