
1/35

Informed Search

Alice Gao
Lecture 4

Based on work by K. Leyton-Brown, K. Larson, and P. van Beek

2/35

Outline

Learning Goals

Recap of Uninformed Search

Using Domain Specific Knowledge

Lowest-Cost-First Search

Informed Search Algorithms
Greedy Search
A* Search

Heuristic Functions

3/35

Learning goals

By the end of the lecture, you should be able to
▶ Define/trace/implement informed search algorithms

(with/without cost) (handling cycles and repeated states).
▶ Determine properties of search algorithms: completeness,

optimality, time and space complexity.
▶ Select the most appropriate search algorithms for specific

problems.
▶ Construct admissible heuristics for appropriate problems.

Verify heuristic dominance.

4/35

Learning Goals

Recap of Uninformed Search

Using Domain Specific Knowledge

Lowest-Cost-First Search

Informed Search Algorithms

Heuristic Functions

5/35

Properties of Uninformed Search Strategies

Algorithm Complete? Optimal? Time Space
IDS Yes* Yes*** O(bd) O(bd)
DFS Yes** No O(bm) O(bm)

BFS Yes* Yes*** O(bd) O(bd)

* if the branching factor is finite.
** if the graph is finite and does not contain cycles.
*** if all arc costs are the same.

6/35

Learning Goals

Recap of Uninformed Search

Using Domain Specific Knowledge

Lowest-Cost-First Search

Informed Search Algorithms

Heuristic Functions

7/35

Informed Search

Domain-specific knowledge
▶ can help people solve hard problems without search.
▶ can help computers find solutions more efficiently.

Informed/Heuristic search
▶ Estimate the cost from a given node to a goal node.
▶ Take into account of the goal when selecting the path to

explore.

8/35

Our goal

▶ Our goal is to find the cheapest path from the start node to a
goal node.

▶ f∗(n):
▶ f∗(n) is impossible to know. Thus, we estimate it.

9/35

Estimating the cost of the optimal path

f(n):

Two functions we can use to construct f(n):
▶ g(n):
▶ h(n):

10/35

The Heuristic Function

Definition (search heuristic)
A search heuristic h(n) is an estimate of the cost of the cheapest
path from node n to a goal node.

▶ h(n) is arbitrary, non-negative, and problem-specific.
▶ If n is a goal node, h(n) = 0.
▶ h(n) must be easy to compute (without search).

11/35

Three New Search Algorithms

Treat the frontier as a priority queue ordered by f(n).
Expand the node with the lowest f(n).
The choice of f determines the search strategy.

Uninformed search algorithm:
▶ Lowest-cost-first search: f(n) = g(n).

Informed search algorithms (that use h(n)):
▶ Greedy search: f(n) = h(n).
▶ A*: f(n) = g(n) + h(n).

12/35

Quiz 1

Alas! Time for Quiz 1!
Good luck!

13/35

Learning Goals

Recap of Uninformed Search

Using Domain Specific Knowledge

Lowest-Cost-First Search

Informed Search Algorithms

Heuristic Functions

14/35

Lowest-Cost-First Search (Uniform-Cost Search)

▶ Goal: minimize the cost of the path to node n.
▶ Treat the frontier as a priority queue ordered by f(n) = g(n).
▶ Expand the cheapest node

▶ Complete?
▶ Optimal?
▶ Time complexity: O(b1+⌊C∗/ϵ⌋) where C∗ is the cost of the

optimal path and every arc cost exceeds ϵ > 0.
▶ Space complexity: O(b1+⌊C∗/ϵ⌋) where C∗ is the cost of the

optimal path and every arc cost exceeds ϵ > 0.

15/35

CQ: Is Lowest-Cost-First Search Optimal?

CQ: Is Lowest-Cost-First Search optimal? Assume that every arc
cost exceeds ϵ > 0 and the branching factor b is finite.
(A) Yes
(B) No
(C) Not enough information to tell

16/35

Learning Goals

Recap of Uninformed Search

Using Domain Specific Knowledge

Lowest-Cost-First Search

Informed Search Algorithms
Greedy Search
A* Search

Heuristic Functions

17/35

Greedy Search (Best-First Search)

▶ Goal: minimize the estimated cost to the goal.
▶ Treat the frontier as a priority queue ordered by f(n) = h(n).
▶ Try to get as close to the goal as it can.

▶ Complete?
▶ Optimal?
▶ Time complexity: O(bm)

▶ Space complexity: O(bm)

18/35

CQ: Is Greedy Search Complete?

CQ: Does there exist a search problem and a heuristic function
such that Greedy Search is NOT complete on the problem?
(A) Yes
(B) No

19/35

CQ: Is Greedy Search Optimal?

CQ: Does there exist a search problem and a heuristic function
such that Greedy Search is NOT optimal on the problem?
(A) Yes
(B) No

20/35

Learning Goals

Recap of Uninformed Search

Using Domain Specific Knowledge

Lowest-Cost-First Search

Informed Search Algorithms
Greedy Search
A* Search

Heuristic Functions

21/35

A* Search

▶ Goal: Minimize the estimated cost of the cheapest path from
the start node to the goal through the current node n.

▶ f(n) = g(n) + h(n)

▶ Complete? Yes, if all arc costs exceed some ϵ > 0 and b is
finite.

▶ Optimal? Yes, if the heuristic is admissible, all arc costs
exceed some ϵ > 0, and b is finite.

▶ Time complexity: O(bm)

▶ Space complexity: O(bm)

22/35

A* is Optimal

The solution found by A* search is optimal if the heuristic h(n) is
admissible.
Definition (admissible heuristic)
A search heuristic h(n) is admissible if it is never an overestimate of
the cost from node n to a goal node. That is, (∀n (h(n) ≤ h∗(n))).

▶ An admissible heuristic is a lower bound on the cost of getting
from node n to the nearest goal node.

23/35

A* is Optimally Efficient

Optimal Efficiency: Among all optimal algorithms that start from
the same start node and use the same heuristic, A* expands the
fewest nodes.

▶ No algorithm with the same information can do better.
▶ Intuition: any algorithm that does not expand all nodes with

f(n) < C∗ run the risk of missing the optimal solution.

24/35

Comparing LCFS, GS and A*

Algorithm Complete? Optimal? Time Space
A*
GS

LCFS

25/35

Iterative Deepening A*

▶ Each iteration is Depth-First Search until a f-value threshold.
▶ A node is not added to the frontier if its f value exceeds the

threshold.
▶ Next iteration sets the new threshold to be the smallest

f-value that exceeded the old threshold.

26/35

Learning Goals

Recap of Uninformed Search

Using Domain Specific Knowledge

Lowest-Cost-First Search

Informed Search Algorithms

Heuristic Functions

27/35

Examples of Heuristic Functions

8-Puzzle:
▶ The number of tiles out of place
▶ The sum of the Manhattan distances of the tiles from their

goal positions
River Crossing:

▶ The number of objects that still need to get to the other side
of the river.

28/35

CQ: Is this heuristic admissible?

CQ: Is the following heuristic for the river crossing problem
admissible?
h(n) = the number of objects that still need to get to
the other side of the river.
(A) Yes
(B) No
(C) Not enough information to tell

29/35

Constructing an Admissible Heuristic

▶ Define a relaxed problem by simplifying or dropping
requirements on the original problem.

▶ Solve the relaxed problem without search.
▶ The cost of the optimal solution to the relaxed problem is an

admissible heuristic for the original problem.

30/35

Constructing an Admissible Heuristic

Example: 8-puzzle: A tile can move from A to B
if A and B are adjacent and B is blank.
Which heuristics can we derive from the relaxed problems below?

▶ Relaxed problem 1: A tile can move from A to B
if A and B are adjacent.

▶ Relaxed problem 2: A tile can move from A to B
if B is blank.

▶ Relaxed problem 3: A tile can move from A to B.

31/35

CQ: Constructing an Admissible Heuristic

CQ: Which heuristics can we derive from the following
relaxed 8-puzzle problem?
Relaxed problem 1: A tile can move from A to B
if A and B are adjacent.
(A) The number of tiles out of place
(B) The sum of the Manhattan distances of the tiles from their

goal positions
(C) Another heuristic not described above

32/35

CQ: Constructing an Admissible Heuristic

CQ: Which heuristics can we derive from the following
relaxed 8-puzzle problem?
Relaxed problem 3: A tile can move from A to B.
(A) The number of tiles out of place
(B) The sum of the Manhattan distances of the tiles from their

goal positions
(C) Another heuristic not described above

33/35

Which Heuristic is Better?

▶ We want a heuristic to be admissible.
▶ We don’t want a heuristic to be close to a constant function.
▶ We want a heuristic to have higher values (close to h∗).

34/35

Dominating Heuristic

Definition (dominating heuristic)
Given heuristics h1(n) and h2(n). h2(n) dominates h1(n) if

▶ (∀n (h2(n) ≥ h1(n))).
▶ (∃n (h2(n) > h1(n))).

Theorem
If h2(n) dominates h1(n), A* using h2 will never expand more
nodes than A* using h1.

35/35

Revisiting the learning goals

By the end of the lecture, you should be able to
▶ Define/trace/implement informed search algorithms

(with/without cost) (handling cycles and repeated states).
▶ Determine properties of search algorithms: completeness,

optimality, time and space complexity.
▶ Select the most appropriate search algorithms for specific

problems.
▶ Construct admissible heuristics for appropriate problems.

Verify heuristic dominance.

	Learning Goals
	Recap of Uninformed Search
	Using Domain Specific Knowledge
	Lowest-Cost-First Search
	Informed Search Algorithms
	Greedy Search
	A* Search

	Heuristic Functions

