
1/34

Uninformed Search

Alice Gao
Lecture 3

Based on work by K. Leyton-Brown, K. Larson, and P. van Beek

2/34

Outline

Learning Goals

Uninformed Search
Breadth-First Search
Depth-First Search
Iterative-Deepening Search

Comparing the algorithms

Revisiting the Learning Goals

3/34

Learning goals

By the end of the lecture, you should be able to
▶ Describe what it means to expand a node and what is a

frontier in a search tree.
▶ Define/trace/implement search algorithms (with/without

cost) (dealing with repeated states)
▶ Define completeness, optimality, time complexity and space

complexity.
▶ Determine properties of search algorithms: completeness,

optimality, time and space complexity.
▶ Given a scenario, explain why it is appropriate or not

appropriate to use a particular search algorithm.

4/34

Learning Goals

Uninformed Search
Breadth-First Search
Depth-First Search
Iterative-Deepening Search

Comparing the algorithms

Revisiting the Learning Goals

5/34

Terminologies

▶ A search tree: the nodes are the states, the arcs are actions,
and the root is the start state.

▶ Expanding a node means applying every legal action
to the current state to generate a set of new states.

▶ The frontier contains the set of all leaf nodes available for
expansion.

6/34

Problem Solving by Graph Searching

frontier

explored nodes

unexplored nodes

start
node

7/34

Graph Search Algorithm

Algorithm 1 Generic graph search algorithm
1: put the start state in the frontier
2: while frontier is not empty do
3: remove a node from the frontier
4: if the node contains a goal state then
5: return the solution
6: end if
7: generate all the successors of the node
8: add every successor of the node to the frontier
9: end while

10: return failure

8/34

The Search Strategy

Search strategy: which node do we remove from the frontier?
▶ Breadth-first search treats the frontier as a queue (FIFO).
▶ Depth-first search treats the frontier as a stack (LIFO).
▶ Informed search treats the frontier as a priority queue.

9/34

Evaluating an Algorithm’s Performance

Definition (complete)
If a solution exists, a complete algorithm is
guaranteed to find a solution within a finite amount of time.

Definition (optimal)
If a solution exists and an algorithm finds a solution,
then the first solution found by an optimal algorithm is
the solution with the lowest cost.

10/34

Evaluating an Algorithm’s Performance

Definition (time complexity)
The time complexity of a search algorithm is an expression for
the worst-case amount of time it will take to run,
expressed in terms of b, d, and m.

Definition (space complexity)
The space complexity of a search algorithm is an expression for
the worst-case amount of memory that the algorithm will use,
expressed in terms of b, d, and m.

Useful definitions:
▶ b: the maximum branching factor (may be infinite).
▶ d: the depth of the shallowest goal node (finite).
▶ m: the maximum path length (may be infinite).

11/34

Learning Goals

Uninformed Search
Breadth-First Search
Depth-First Search
Iterative-Deepening Search

Comparing the algorithms

Revisiting the Learning Goals

12/34

Breadth-First Search

Algorithm 2 Breadth-First Search
1: put the start state in the frontier
2: while frontier is not empty do
3: remove the oldest node added to the frontier
4: if the node contains a goal state then
5: return the solution
6: end if
7: generate all the successors of the node
8: add every successor of the node to the frontier
9: end while

10: return failure

13/34

Breadth-First Search

Treats the frontier as a queue (FIFO).
Expands the shallowest node in the frontier.

▶ Complete?
▶ Optimal? Yes if all arc costs are the same.
▶ Time complexity: O(bd)

▶ Space complexity:

14/34

CQ: Is BFS complete?

CQ: Is BFS complete?
(A) Yes.
(B) No.
(C) The answer depends on the branching factor.
(D) The answer depends on whether there are infinite paths in the

search tree.

15/34

CQ: Space complexity of BFS

CQ: What is the space complexity of BFS?
(A) O(bd)
(B) O(bd)

(C) O(bm)

(D) O(bm)

16/34

Using Breadth-First Search

Would you use Breadth-First Search in any scenario below?
1. Memory is limited.
2. All solutions are deep in the tree.
3. There are infinite paths in the tree.
4. The branching factor is large.
5. We must find the shallowest goal node.

17/34

Learning Goals

Uninformed Search
Breadth-First Search
Depth-First Search
Iterative-Deepening Search

Comparing the algorithms

Revisiting the Learning Goals

18/34

Depth-First Search

Algorithm 3 Depth-First Search
1: put the start state in the frontier
2: while frontier is not empty do
3: remove the newest node added to the frontier
4: if the node contains a goal state then
5: return the solution
6: end if
7: generate all the successors of the node
8: add every successor of the node to the frontier
9: end while

10: return failure

19/34

Depth-First Search

Treats the frontier as a stack (LIFO).
Expands the deepest node in the frontier.

▶ Complete?
▶ Optimal? No.
▶ Time complexity: O(bm)

▶ Space complexity:

20/34

CQ: Is DFS complete?

CQ: Is DFS complete?
(A) Yes.
(B) No.
(C) The answer depends on the branching factor.
(D) The answer depends on whether there are infinite paths in the

search tree.

21/34

CQ: Space complexity of DFS

CQ: What is the space complexity of DFS?
(A) O(bd)
(B) O(bd)

(C) O(bm)

(D) O(bm)

22/34

Using Depth-First Search

Would you use Depth-First Search in any scenario below? Why?
1. Memory is limited.
2. Some paths have infinite lengths.
3. The graph contains cycles.
4. Some solutions are very shallow.

23/34

Handling Repeated States

▶ Store visited states in a hash table.
▶ How would the properties of DFS change if we prune visited

states?

24/34

Comparing BFS and DFS

▶ What are the advantages of BFS over DFS?
▶ What are the advantages of DFS over BFS?

25/34

CQ: BFS or DFS?

CQ: Suppose that some solutions are very deep and some
solutions are very shallow in the search tree of a problem. Which
of BFS and DFS should we use to solve this problem?
(A) BFS
(B) DFS
(C) Both of BFS and DFS
(D) Neither of BFS and DFS

26/34

CQ: BFS or DFS?

CQ: If we have very limited memory and the search graph of a
problem contains cycles, which of BFS and DFS should we use to
solve this problem?
(A) BFS
(B) DFS
(C) Both of BFS and DFS
(D) Neither of BFS and DFS

27/34

Learning Goals

Uninformed Search
Breadth-First Search
Depth-First Search
Iterative-Deepening Search

Comparing the algorithms

Revisiting the Learning Goals

28/34

The best of BFS and DFS

BFS DFS
requires lots of space requires little space

complete not complete

The best of both worlds:
▶ Run DFS until level l.
▶ If no solution found, try level l + 1, l + 2, etc.

29/34

Iterative Deepening Search

Algorithm 4 Iterative Deepening Search
1: for l = 0 to ∞ do
2: Perform depth-first search up to maximum depth limit l
3: end for

30/34

Iterative-Deepening Search

For depth limit l = 0, 1, ...
Perform a depth-first search with maximum depth l.

▶ Complete? Yes if the branching factor is finite.
▶ Optimal? Yes if all arc costs are the same.
▶ Time complexity: O(bd)

▶ Space complexity: O(bd)

31/34

Using Iterative-Deepening Search

▶ How is IDS similar to/different from DFS?
▶ How is IDS similar to/different from BFS?
▶ Is it too costly for IDS to generate states in the upper levels

multiple times?

32/34

Comparing BFS, DFS, and IDS

Algorithm Complete? Optimal? Time Space
IDS
DFS
BFS

* if the branching factor is finite.
** if the search tree does not have infinite paths.

33/34

CQ: Comparing IDS and DFS

CQ: Suppose that the search tree of a problem has no infinite
paths. Which one of DFS and IDS should we use to solve this
problem?
(A) DFS is better than IDS.
(B) IDS is better than DFS.
(C) DFS and IDS are the same.

34/34

Revisiting the learning goals

By the end of the lecture, you should be able to
▶ Describe what it means to expand a node and what is a

frontier in a search tree.
▶ Define/trace/implement search algorithms (with/without

cost) (dealing with repeated states)
▶ Define completeness, optimality, time complexity and space

complexity.
▶ Determine properties of search algorithms: completeness,

optimality, time and space complexity.
▶ Given a scenario, explain why it is appropriate or not

appropriate to use a particular search algorithm.

	Learning Goals
	Uninformed Search
	Breadth-First Search
	Depth-First Search
	Iterative-Deepening Search

	Comparing the algorithms
	Revisiting the Learning Goals

