
1/36

Program Verification
Alice Gao
Lecture 18

Based on work by J. Buss, L. Kari, A. Lubiw, B. Bonakdarpour, D.
Maftuleac, C. Roberts, R. Trefler, and P. Van Beek

2/36

Outline

Program Verification
The Learning Goals
Introduction to Program Verification
Partial Correctness
Total Correctness
Revisiting the Learning Goals

3/36

Learning goals

By the end of this lecture, you should be able to:
▶ Give reasons for performing formal verification rather than

testing.
▶ Define a Hoare triple.
▶ Define partial correctness.
▶ Define total correctness.

4/36

Program Correctness

Does a program satisfy its specification? (Does it do what it is
supposed to do?
How do we show that a program works correctly?

▶ Walk through the code
▶ Testing (black box and white box)
▶ Formal verification

5/36

Techniques for verifying program correctness

Testing
▶ Check a program for carefully chosen inputs.
▶ Cannot be exhaustive in general.

Formal Verification:
▶ State a specification formally.
▶ Prove that a program satisfies the specification for all inputs.

6/36

Why is testing not sufficient?

True/False
1. We can use testing to show that there exists a bug in a

program.
2. We can use testing to show that there does NOT exist a bug

in a program.

(A) True and True
(B) True and False
(C) False and True
(D) False and False
(E) I don’t know.

7/36

Why is testing not sufficient?

Testing can be a very effective way to show the presence
of bugs, but it is hopelessly inadequate for showing their
absence.

E. Dijkstra, 1972.

8/36

Why formally specify and verify programs

▶ Discover and reduce bugs especially for safety-critical software
and hardware.

▶ Documentation facilitates collaboration and code re-use.

9/36

What is being done in practice?

▶ Formally specifying software is widespread.
▶ Formally verifying software is less widespread.
▶ Hardware verification is common.

10/36

Without formal verification, what could go wrong?

▶ Therac-25, X-ray, 1985
▶ Overdosing patients during radiation treatment, 5 dead
▶ Reason: race condition between concurrent tasks

▶ AT&T, 1990
▶ Long distance service fails for 9 hours.
▶ Reason: wrong BREAK statement in C code

▶ Patriot-Scud, 1991
▶ 28 dead and 100 injured
▶ Reason: rounding error

▶ Pentium Processor, 1994
▶ The division algorithm is incorrect.
▶ Reason: incomplete entries in a look-up table

11/36

Without formal verification, what could go wrong?

▶ Ariane 5, 1996
▶ Exploded 37 seconds after takeoff
▶ Reason: data conversion of a too large number

▶ Mars Climate Orbiter, 1999
▶ Destroyed on entering atmosphere of Mars
▶ Reason: mixture of pounds and kilograms

▶ Power black-out, 2003
▶ 50 million people in Canada and US without power
▶ Reason: programming error

▶ Royal Bank, 2004
▶ Financial transactions disrupted for 5 days
▶ Reason: programming error

12/36

Without formal verification, what could go wrong?

▶ UK Child Support Agency, 2004
▶ Overpaid 1.9 million people, underpaid 700,000, cost to

taxpayers over $ 1 billion
▶ Reason: more than 500 bugs reported

▶ Science (a prestigious scientific journal), 2006
▶ Retraction of research papers due to erroneous research results
▶ Reason: program incorrectly flipped the sign (+ to -) on data

▶ Toyota Prius, 2007
▶ 160,000 hybrid vehicles recalled due to stalling unexpectedly
▶ Reason: programming error

▶ Knight Capital Group, 2012
▶ High-frequency trading system lost $440 million in 30 min
▶ Reason: programming error

13/36

The process of formal verification

1. Convert an informal description R of requirements for a
program into a logical formula φR.

2. Write a program P which is meant to satisfy the requirements
R above.

3. Prove that program P satisfies the formula φR.
We will consider only the third part in this course.

14/36

Our programming language

We will use a subset of C/C++ and Java.
Core features of our language:

▶ integer and Boolean expressions
▶ assignment statements
▶ conditional statements
▶ while-loops
▶ arrays

15/36

Imperative programs

▶ A program manipulates variables.
▶ The state of a program consists of the values of variables at a

particular time in the program execution.
▶ A sequence of commands modify the state of the program.
▶ Given inputs, the program produce outputs.

16/36

Imperative programs

y = 1 ;
z = 0 ;
whi le (z != x) {

z = z + 1 ;
y = y ∗ z ;

}
State at the “while” test:

1. z = 0, y = 1
2. z = 1, y = 1
3. z = 2, y = 2
4. z = 3, y = 6
5. z = 4, y = 24

17/36

Formal specification

Consider the following specification:

Given an integer x as input, the program will compute an integer y
whose square is less than x.

Does this specification provide sufficient information for us to
verify the correctness of the program?

18/36

Formal specification

Two important components of a specification:
▶ The state before the program executes
▶ The state after the program executes

19/36

Tony Hoare

▶ Sir Charles Antony Richard Hoare. British computer scientist.
▶ Won Turing award in 1980.
▶ Developed the QuickSort algorithm and the Hoare logic for

verifying program correctness.

20/36

Hoare Triples

A Hoare Triple consists of
▶ L P M — precondition
▶ C — code or program
▶ L Q M — postcondition

The meaning of the Hoare triple L P M C L Q M :

If the state of program C before execution satisfies P,
then the ending state of C after execution will satisfy Q.

21/36

Specification of a Program

A specification of a program C is
a Hoare triple with C as the second component: L P M C L Q M .
Example: The requirement

If the input x is a positive integer,
compute a number whose square is less than x

might be expressed as

L x > 0 M C L y ∗ y < x M .

22/36

Specification is NOT behaviour

Consider two programs C1 and C2.

Listing 1: C1

y = 0 ;

Listing 2: C2

y = 0 ;
whi le (y ∗ y < x) {

y = y + 1 ;
}
y = y − 1 ;

Is the Hoare triple L (x > 0) M C1 L ((y ∗ y) < x) M satisfied?
(A) Yes
(B) No
(C) Not enough information to tell

23/36

Specification is NOT behaviour

Consider two programs C1 and C2.

Listing 3: C1

y = 0 ;

Listing 4: C2

y = 0 ;
whi le (y ∗ y < x) {

y = y + 1 ;
}
y = y − 1 ;

Is the Hoare triple L (x > 0) M C2 L ((y ∗ y) < x) M satisfied?
(A) Yes
(B) No
(C) Not enough information to tell

24/36

Partial Correctness

A triple L P M C L Q M is satisfied under partial correctness
if and only if

▶ for every state s1 that satisfies condition P,
▶ if execution of C starting from state s1 terminates in a state

s2,
▶ then state s2 satisfies condition Q.

25/36

CQ Verifying Partial Correctness

Consider the Hoare triple L (x > 0) M C1 L ((y ∗ y) < x) M .
If we run C1 starting with the state x = 5, y = 5,
C1 terminates in the state x = 5, y = 0.
Is the Hoare triple satisfied under partial correctness?
(A) Yes
(B) No
(C) Not enough information to tell.

26/36

CQ Verifying Partial Correctness

Consider the Hoare triple L (x > 0) M C2 L ((y ∗ y) < x) M .
If we run C2 starting with the state x = 5, y = 5,
C2 terminates in the state x = 5, y = 3.
Is the Hoare triple satisfied under partial correctness?
(A) Yes
(B) No
(C) Not enough information to tell.

27/36

CQ Verifying Partial Correctness

Consider the Hoare triple L (x > 0) M C3 L ((y ∗ y) < x) M .
If we run C3 starting with the state x = −3, y = 5,
C3 terminates in the state x = −3, y = 0.
Is the Hoare triple satisfied under partial correctness?
(A) Yes
(B) No
(C) Not enough information to tell.

28/36

CQ Verifying Partial Correctness

Consider the Hoare triple L (x > 0) M C4 L ((y ∗ y) < x) M .
If we run C4 starting with the state x = 2, y = 5,
C4 does not terminate.
Is the Hoare triple satisfied under partial correctness?
(A) Yes
(B) No
(C) Not enough information to tell.

29/36

Total Correctness

A triple L P M C L Q M is satisfied under total correctness
if and only if

▶ for every state s1 that satisfies condition P,
▶ execution of C starting from state s1 terminates in a state s2,
▶ and state s2 satisfies condition Q.

Total Correctness = Partial Correctness + Termination

30/36

CQ Verifying Partial and Total Correctness

Is the following Hoare triple satisfied under partial and/or total
correctness?L (x = 1) M
y = x ;L (y = 1) M
(A) Neither satisfied.
(B) Only partial correctness satisfied.
(C) Total correctness satisfied.

31/36

CQ Verifying Partial and Total Correctness

Is the following Hoare triple satisfied under partial and/or total
correctness?L (x = 1) M
y = x ;L (y = 2) M
(A) Neither satisfied.
(B) Only partial correctness satisfied.
(C) Total correctness satisfied.

32/36

CQ Verifying Partial and Total Correctness

Is the following Hoare triple satisfied under partial and/or total
correctness?L (x = 1) M
whi le (1) {

x = 0
} ;L (x > 0) M
(A) Neither satisfied.
(B) Only partial correctness satisfied.
(C) Total correctness satisfied.

33/36

CQ Verifying Partial and Total Correctness

Is the following Hoare triple satisfied under partial and/or total
correctness?L (x ≥ 0) M
y = 1 ;
z = 0 ;
whi le (z != x) {

z = z + 1 ;
y = y ∗ z ;

}L (y = x!) M
(A) Neither satisfied.
(B) Only partial correctness satisfied.
(C) Total correctness satisfied.

34/36

CQ Verifying Partial and Total Correctness

Is the following Hoare triple satisfied under partial and/or total
correctness?L true M
y = 1 ;
z = 0 ;
whi le (z != x) {

z = z + 1 ;
y = y ∗ z ;

}L (y = x!) M
(A) Neither satisfied.
(B) Only partial correctness satisfied.
(C) Total correctness satisfied.

35/36

CQ Difference between Partial and Total Correctness

For the following Hoare triple, what is the
most important difference between partial and total correctness?

L P M C L Q M
(A) One requires the starting state to satisfy P

and the other one doesn’t.
(B) One requires the program C to terminate

and the other one doesn’t.
(C) One requires the terminating state to satisfy Q

and the other one doesn’t.
(D) There is no difference.

36/36

Revisiting the learning goals

By the end of this lecture, you should be able to:
▶ Give reasons for performing formal verification rather than

testing.
▶ Define a Hoare triple.
▶ Define partial correctness.
▶ Define total correctness.

	Program Verification
	The Learning Goals
	Introduction to Program Verification
	Partial Correctness
	Total Correctness
	Revisiting the Learning Goals

