Predicate Logic: Soundness and Completeness of Natural Deduction

Alice Gao Lecture 17

Outline

Soundness and Completeness of Natural Deduction The Learning Goals The soundness of an inference rule Satisfiable set of formulas

Revisiting the Learning Goals

Learning goals

By the end of this lecture, you should be able to:

- Define soundness and completeness.
- Prove that an inference rule is sound or not sound.
- Prove that a semantic entailment holds using the soundness and completeness theorems.
- Show that no natural deduction proof exists for a semantic entailment using the soundness and completeness theorems.

CQ Choosing concrete formulas

True/False: Let α be a Predicate formula. There exists an interpretation and environment under which α is true.

- (A) True
- (B) False
- (C) Not enough information

CQ A set of formulas is unsatisfiable

Suppose that a set of formulas Σ is unsatisfiable.

Which of the following is correct?

- (A) For every pair (I, E), at least one formula in Σ is false.
- (B) For one pair (I, E), at least one formula in Σ is false.
- (C) For every pair (I, E), at least one formula in Σ is a contradiction.
- (D) For one pair (I, E), at least one formula in Σ is a contradiction.
- (E) None of the above

CQ Proving unsatisfiability

We want to prove that a set of formulas Σ is unsatisfiable. See the beginning of our proof below:

Consider any interpretation and environment $(I, \boldsymbol{\mathrm{E}}).$ Consider two cases.

- 1. At least one formula in Σ is false under (I, E).
- 2. ...

What is the other case?

- (A) Every formula in Σ is true under (I, E).
- (B) Every formula in Σ is false under (I, E).
- (C) At least one formula in Σ is true under (I, E).
- (D) At least one formula in Σ is false under (I, E).
- (E) None of the above

Revisiting the learning goals

By the end of this lecture, you should be able to:

- Define soundness and completeness.
- Prove that an inference rule is sound or not sound.
- Prove that a semantic entailment holds using the soundness and completeness theorems.
- ▶ Show that no natural deduction proof exists for a semantic entailment using the soundness and completeness theorems.