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Learning Goals

By the end of this lecture, you should be able to

» Define the completeness of formal deduction.
» Define consistency and satisfiability.

» Prove properties of consistent and satisfiable sets based on
their definitions.

» Reproduce the key steps of the proof of the completeness
theorem.
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The Soundness of Formal Deduction

Theorems 1 and 2 are equivalent.

Theorem 1 (Soundness of Formal Deduction)
IfX+ A, then ¥ F A.

Theorem 2
If 3 is satisfiable, then Y. is consistent.
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The Completeness of Formal Deduction

Theorems 3 and 4 are equivalent.

Theorem 3 (Completeness of Formal Deduction)
IfXE A, then X - A.

Theorem 4
If X is consistent, then Y. is satisfiable.
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Outline

Definitions of Satisfiability and Consistency
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Y is satisfiable

Definition 5
Y is satisfiable if there exists a truth valuation ¢ such that

for every Ae X, At =1.

Note that this is a semantic notion.
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Y. is consistent

Intuitively, X is consistent if it doesn't prove a contradiction.

Two equivalent definitions:
1. There exists a formula A, ¥ ¥ A.
JA(X FA).
2. For every formula A, if ¥ F A, then X ¥ (—A).
VAXFA— X F-A).

Note that consistency is a syntactical notion.
Let's prove that these two definitions are equivalent.
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> is consistent - two equivalent definitions

Theorem 6
Def 2 implies def 1.

Proof.
Assume that for every formula A, if ¥ F A, then X ¥ (-A).
We need to find a formula A such that X ¥ A.
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> is consistent - two equivalent definitions

Theorem 7
Negation of def 2 implies negation of def 1.

Proof.

Assume that there exists a formula A such that ¥ - A and
Y (-4).

We need to prove that for every formula A, X - A.
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Sketch of the Proof of The Completeness of Formal
Deduction

Theorem 8
If ¥ is consistent implies X is satisfiable,
then X E A implies X + A.

Proof Sketch.
Assume that X E A.

If ¥ E A, then we can prove that ¥ U {—A} is not satisfiable.
(Part of assignment 4)

By our assumption, if ¥ U {—A} is not satisfiable,
then ¥ U {—A} is inconsistent.

If ¥ U {—A} is inconsistent, then X - A.
(Let’s prove this part.)
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Properties of a Consistent Set — Direction 1

Theorem 9
If ¥ U {—A} is inconsistent, then ¥ - A.

Proof.

Similarly, we can prove that
“if ¥ U {A} is inconsistent, then X - (—A).
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Exercise: Properties of a Consistent Set — Direction 2

Theorem 10
If¥ F A, then ¥ U {—A} is inconsistent.

Proof.

Similarly, we can prove that
“if ¥+ (=A), then ¥ U {A} is inconsistent.”
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Outline

Two Proofs of Completeness of FD
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Two Proofs of the Completeness of Formal Deduction

We will present two versions of the proofs of the completeness of
formal deduction.
These two versions are almost identical except for two key points.
1. The proofs define the truth valuation ¢ based on the
maximally consistent set >*.

» Proof 1 defines pt = 1 iff p € 3%
» Proof 2 defines pt = 1 iff =* F p.

2. Because of the definitions of the truth valuation ¢,
the proofs require different definitions of maximal consistency.

» Proof 1 requires the maximally consistent set 3* to satisfy
A€ ¥*or (—A) € X* for every formula A.

» Proof 2 requires the maximally consistent set ¥* to satisfy
¥*F A or ¥*F (—A) for every formula A.
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Two Definitions of Maximal Consistency

The two proofs require two different definitions of a maximally
consistent set. The first definition is stronger than and implies
the second definition.

1. Stronger definition given in the Lu Zhongwan textbook

Given a consistent X, 3 is maximally consistent if and only if

> For every formula A, if A ¢ X, then X U {A} is inconsistent.
» For every formula A, A € ¥ or (—A) € X but not both.

This definition is re-stated on slide 18.
2. Weaker definition given in Assignment 5

Given a consistent X, ¥ is maximally consistent if and only if

» For every formula A, if ¥ ¥ A, then X U { A} is inconsistent.
» For every formula A, ¥+ A or £+ (—A) but not both.

This definition is re-stated on slide 29.
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Outline

Proof of Completeness of FD using the Stronger Definition of
Maximal Consistency
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Every Consistent Set is Satisfiable

To finish the proof of the completeness theorem,
it remains to prove theorem 4,
which says “if 3 is consistent, then X satisfiable.”

Proof Sketch.

Assume that X is consistent. We need to find a truth valuation ¢
such that A* =1 for every formula A € ¥.

Extend 3 to some maximally consistent set ¥*. Let ¢ be a truth
valuation such that for every propositional variable p,
pt =1 if and only if p € ¥*.

For every A € 3, A € ¥*. We can prove that A® = 1. Therefore,
. is satisfied by t. O
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Definitions of a Maximally Consistent Set (Stronger
Version)

A key step in proving theorem 4 is
to construct a maximally consistent set that includes X.

First, let's look at the definition of a maximally consistent set.
Given a consistent X, 3 is maximally consistent if and only if

» For every formula A, if A ¢ X, then £ U {A} is inconsistent.
» For every formula A, A € ¥ or (—A) € ¥ but not both.

This definition is given in the Lu Zhongwan textbook and
it is stronger than the definition on slide 29.

CS 245 Logic and Computation Fall 2019 18 /37



Extending ¥ to a Maximally Consistent Set >*

Let ¥ be a consistent set of formulas.

We extend ¥ to a maximally consistent set >* as follows.

Arbitrarily enumerate all the well-formed formulas using the

following sequence.
Al, A27 A37 cee

Construct an infinite sequence of sets >, as follows.

n

Y, U{A, 1}, if X, U{A4, 1} is consistent

2 =
et {En, otherwise

Observe that X, C ¥, and X, is consistent.
(We can prove this by induction on n.)
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Extending to Maximal Consistency (continued)

Define & = | | %,,.

neN

Think of ¥* as the largest possible set that
» contains X, and

» is consistent.

We will now prove that ¥* is maximally consistent.
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>* is maximally consistent

First, we prove that >* is consistent.

Next, we prove that 3* is maximally consistent.
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A Maximally Consistent Set Proves Its Elements

Note that direction 2 of this lemma does not hold
for the weaker definitions of maximal consistency given in
assignment 5.

Lemma 11 (Lemma 5.3.2 in Lu Zhongwan)
Suppose ¥ is maximally consistent. Then, A € X iff ¥+ A.

Proof.

Direction 1: Assume A € ¥. Then, ¥+ A by (€).

Direction 2: Assume X F A. Towards a contradiction, assume that
A ¢ ¥. Since ¥ is maximally consistent, ¥ U {A} is inconsistent.
Then, ¥+ (—A) and ¥ is inconsistent, contradicting the maximal
consistency of X. Hence, A € X. O
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Satisfying a Maximally Consistent Set

Lemma 12

Let X* be a maximally consistent set.

Let t be a truth valuation such that

pt =1 if and only if p € ¥* for every propositional variable p.

Then, for every well-formed propositional formula A,
At =1 if and only if A € ¥*.

Proof.
By induction on the structure of A.
(Continued..)
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Base case and Inductive case 1

» Base case: A is a propositional variable p.
p € X* iff pt = 1 by the definition of t.

» Inductive case 1: A =—-B.
Induction hypothesis: Bt =1 iff B € ©*.

We need to show that (—B)* =1 iff =B € ¥*.
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Inductive case 2

» Inductive case 2: A= BAC.
Induction hypotheses: Bt =1 iff Be ¥*. Ct =1iff C € ¥*.
We need to show that (BAC)! =1iff BAC € X*.

Direction 1:

Direction 2:
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Inductive cases 3, 4, and 5

» Inductive case 3: A= BV C.
Induction hypotheses: Bt =1 iff Be ¥*. Ct =1iff C € ¥*.
We can show that if BV C € X* iff Be ¥* or C € X*.

» Inductive case 4: A= B — C.
Induction hypotheses: Bt =1 iff Be ¥*. Ct = 1iff C € X*.
We can show that B — C € ¥* iff B € ¥* implies C € ¥*.

» Inductive case 5: A= B« C.
Induction hypotheses: Bt =1 iff Be ¥*. Ct =1iff C € ¥*.
We can show that B <+ C' € X* iff (B € ¥* iff C' € ¥¥).
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Outline

Proof of Completeness of FD using the Weaker Definition of
Maximal Consistency
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Every Consistent Set is Satisfiable

To finish the proof of the completeness theorem,
it remains to prove theorem 4,
which says “if 3 is consistent, then X satisfiable.”

Proof Sketch.

Assume that X is consistent. We need to find a truth valuation ¢
such that A* =1 for every formula A € ¥.

Extend 3 to some maximally consistent set ¥*. Let ¢ be a truth
valuation such that for every propositional variable p,

pt =1 if and only if ©* - p.

For every A € 3, A € ¥*. We can prove that A® = 1. Therefore,
. is satisfied by t. O
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Definitions of a Maximally Consistent Set (Weaker Version)

A key step in proving theorem 4 is
to construct a maximally consistent set that includes .

Let's look at the definition of a maximally consistent set.

Given a consistent 3, ¥ is maximally consistent if and only if
» For every formula A4, if ¥ ¥ A, then ¥ U {A} is inconsistent.
» For every formula A, ¥+ A or ¥ F (—=A) but not both.

This definition is given in Assignment 5 and
it is weaker than the definition on slide 18.
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Extending ¥ to a Maximally Consistent Set >*

Let ¥ be a consistent set of formulas.

We extend ¥ to a maximally consistent set >* as follows.

Arbitrarily enumerate all the well-formed formulas using the

following sequence.
Al, A27 A37 cee

Construct an infinite sequence of sets >, as follows.

n

Y, U{A, 1}, if X, U{A4, 1} is consistent

2 =
et {En, otherwise

Observe that X, C ¥, and X, is consistent.
(We can prove this by induction on n.)
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Extending to Maximal Consistency (continued)

Define & = | | %,,.

neN

Think of ¥* as the largest possible set that
» contains X, and

» is consistent.

We will now prove that ¥* is maximally consistent.
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>* is maximally consistent

First, we prove that >* is consistent.

Next, we prove that 3* is maximally consistent.

CS 245 Logic and Computation Fall 2019 32 /37



Satisfying a Maximally Consistent Set

Lemma 13

Let ¥* be a maximally consistent set.

Let t be a truth valuation such that

pt = 1 if and only if ¥* I~ p for every propositional variable p.

Then, for every well-formed propositional formula A,
At =1 ifand only if ¥* - A.

Proof.
By induction on the structure of A.
(Continued..)
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Base case and Inductive case 1

» Base case: A is a propositional variable p.
¥* I p iff pt = 1 by the definition of ¢.

» Inductive case 1: A =—-B.
Induction hypothesis: Bt =1 iff ©* - B.

We need to show that (=B)? = 1 iff ¥* - (=B).
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Inductive case 2

» Inductive case 2: A= BAC.
Induction hypotheses: Bt =1 iff ¥*+ B. Ct* =1iff ©* - C.
We need to show that (BAC)t =1iff 2* = BAC.

Direction 1:

Direction 2:
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Inductive cases 3, 4, and 5

» Inductive case 3: A= BV C.
Induction hypotheses: Bt =1 iff X* - B. Ct =1 iff * - C.
We can show that X*F BV C iff ¥*+ B or X* F C.

» Inductive case 4: A=B — C.
Induction hypotheses: Bt =1 iff *+ B. Ct =1 iff 2* - C.
We can show that ¥* F (B — C) iff ¥* - B implies ¥* + C.

» Inductive case 5: A= B« C.
Induction hypotheses: Bt =1 iff X* - B. Ct =1 iff * - C.
We can show that ¥* F (B < C) iff (X¥* - B iff ¥* - C).
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Revisiting the Learning Goals

By the end of this lecture, you should be able to

» Define the completeness of formal deduction.
» Define consistency and satisfiability.

» Prove properties of consistent and satisfiable sets based on
their definitions.

» Reproduce the key steps of the proof of the completeness
theorem.
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