Arrays

«O>» «F>r «=r «=>» N

Assignment of Values of an Array

Let A be an array of n integers: A[1], A[2], ..., A[n].

Assignment may work as before: (P[A[x]/v])
v = Alx] ;
(P) assignment

But a complication can occur: (Afy] =0)
Alx] = 1;
(Al =0) 777

The conclusion is not valid if x = y.

A correct rule must account for possible changes to A[y], A[z+3], etc.,
when A[x] changes.

Program Verification Arrays 313/375

Assignment to a Whole Array

Our solution: Treat an assignment to an array value
Ale;] = eq
as an assignment of the whole array:
A= AMey ey} ;

where the term "A{e; < e5}" denotes an array identical to A except the
et" element is changed to have the value e,.

Program Verification Arrays 314/375

Array Assignment: Definition and Examples

Definition: A{i < e} denotes the array with entries given by

e, if j=1

Al el = {A[j} iFj 410

Examples:
A{1 + 7}{2+ 14}]2] =77

A{l « TH2 « 14}{3 « 21}[2] = 77

A{L TH2 « 14}{3 « 21}[i] = 77

Program Verification Arrays

315/375

Array assignment:

(Q[A{el — 62}/A]) Ao]

where

equD

Ali + e}[j] = {Z[j] =

if 4
«O>» «F>r «=r «=>» o
-~ Program Verification Arrays 316/375

(Array assignment)

Prove the following is satisfied under partial correctness.

(Alz] =29 N Alyl =yo)

t = Alx] ;
Alx] = Alyl ;
Alyl = t ;

(Alz] =yo N Aly] =20)

We do assignments bottom-up, as always....

«O>» <Fr «=Z»r «E>» Q>

(Alz] =z A Alyl =y D

t = Alx] ;
Alx] = Aly] ;

(Ay« Yzl =yo N Ay < tHyl =20)
Alyl =t ;

(Alz] =yo N Aly] = z4) array assignment

«O> «F>r «=)r « =) = o>

(Alz] =z A Alyl =y D

t = Alx] ;
(Az AlylHy « t}x] = yo
A Az AlylHy < t}yl = z¢)

Alx] = Aly]l ;

(Ay t}z] =yo N Ay < t}yl =z) array assignment
Alyl = t ;

(Alz] =yo N Aly] =20) array assignment

Example: push up assertions for assignments

(Alz] =29 NAlyl=yo D
(A{z « AlylHy < Alz]}z] =y,
AN Alz « AlylHy < Alz[}y] =20)
t = Alx] ;
(A{z « AlylHy « t}Hz] =y,

assignment
N Al AlylHy « Ml =)
Alx] = Aly] ;
(A{y « t}[x] =yo N A{y < t}y] =x¢) array assignment
Alyl = t ;
(Alx] =y N Aly] =2¢) array assignment

Program Verification Arrays 318/375

(Alz] =20 N Ayl =yo D
(A{z « Aly|Hy « Alz]}[z] =y,

implied (a)

N Alz — AlylHy < Alz]}y] =20)
t = Alx] ;
(Afz — Aly[Hy < t}[z] = yo assignment

N Alz — Aly[Hy < 1yl =20)
Alx] = Aly] ;
(A{y « t}zx] =yo N Ay < t}yl =24 array assignment
Alyl = t ;
(Alx] =yo N Ayl =24 array assignment

Example: Proof of implied

As “implied (a)”, we need to prove the following.

Lemma:

A{z « AlyHy « Alz]}z] = A[y]
and

Az < Aly|Hy < Alz]}y] = Alz] .
Proof.

In the second equation, the index element is the assigned element.

For the first equation, we consider two cases.

= If y £z, the "{y < ... }" is irrelevant, and the claim holds.
= If y ==, the result on the left is A[z], which is also A[y].

Program Verification Arrays 319/375

Example: Alternative proof

For an alternative proof, use the definition of M{i < e}[j],
with A{z < Afy]} as M, i =y and e = A[x]:

Afe — AlHy & AlTHi = {AM’ =i

At index j =y, this is just A[z], as required.

In the case j = x, we get the required value A[y]. (Why?)

And, finally, if j # x and j # y, then

Afz — AlylH{y « Alz]}j] = Alj]

as we should have required.

Program Verification Arrays

Afw — Ayllsl, ®y#7 .

320/375

Example: reversing an array

Example: Given an array R with n elements, reverse the elements.

Algorithm: exchange R[j] with R[n + 1 — j], for each 1 < j < |n/2].

A possible program is

j=1;

while (2%j <=n) {
t = R[j] ;
R[j] = R[n+1-j1 ;
Rln+1-j] =t ;
j=3+1;

}

Needed: a postcondition, and a loop invariant.

321/375

Program Verification Arrays and Loops, Together

Reversal code: conditions and an invariant
Precondition: (Vx ((1 <z<n)— (R[z]= rx))))
Postcondition: (Vm ((1 <z<n)— (R[z]= rnﬂ_m))).

Invariant? When exchanging at position j?

= Ifz <jorxz>n+1—j then R[x] and R[n + 1 — x| have already
been exchanged.

» If j <ax <n+1-—j then no exchange has happened yet.
Thus let Inv'(j) be the formula
(Vo (<0< = (Rle) = rnir o AR+ 1=a) =1)

A ((jgxgn/Q) — (R[z]=r, NR[n+1—1] :rnﬂﬂc)))) :

and Inv(j) = Inv'(j) A (1 <j<mn).

Program Verification Arrays and Loops, Together 322/375

Reversal: Annotations around the loop

The annotations surrounding the while-loop:

(((n20) A (Vo (<o <n) > (Bl =7,)))))D

(/nv(1)) implied (a)
=13
(Inv(j)) assignment
while (2xj <= n) {
((Inv(j) A (25 <n))) partial-while
(Inv(5)) (TEA)
+
((Inv(j) A (25> n))) partial-while
((Ve((1<z<n) = (Rlz]=r,.1 ,)))) implied (b)

Program Verification Arrays and Loops, Together 323/375

We must now handle the code inside the loop.
((Inv(j) A2j<n))
(Inv(j+ 1)[R"/R], where R is

R{j < Rln+1—jlH{(n+1—j) + R[]}
t = R[j1; R[j] = Rln+1-j]; Rln+1-j] = t;
(Inv(j+1))D

3=3

b

partial-while
1

implied (c)
(Inv(G) D

Lemma
assignment

«O> «F>r «=)r « =) = o>

~ Program Verification Arrays and Loops, Together 324/375

Proof of Implied Condition (c)
Recall Inv'(j):
(Vm (((1 <z<j)—= (Rlz]=rpi1_s NRn+1—z]= rw))

A ((jgxgn/2) — (R[z]=r, AN Rln+1—1x] :rn+17w)>)> :

We need this to imply Inv'(j + 1)[R’/R], which is
(Vm (((1 <w<iil) > (Ra] =T oA R n+1—a]=1,))
Mo <n/2) o (Rlal=r AR+ 1=l =10 0)))
which by the construction of R’ is equivalent to
(\m (((1 <w<j) > (Rla] =7,y o ARIN+1—a]=7,))
AR =7p1) AN(R[n+1—j]=7))
MG+ 1<2<n/2) = (Rle] = ry A Rln+1—a] = rnﬂ,m)))) .

Program Verification Arrays and Loops, Together 325/375

Example: Binary Search

«O> «F>r «=)r « =) o>

Binary Search

Binary search is a very common technique, to find whether a given item
exists in a sorted array.

Although the algorithm is simple in principle, it is easy to get the details
wrong. Hence verification is in order.

Inputs: Array A indexed from 1 to n; integer x.

Precondition: A is sorted: Vi Vj (1 <i<j<n)— (A[i] < A[j])).

Output values: boolean found; integer m.

Postcondition: Either found is true and A[m| = x, or found is false and x
does not occur at any location of A.

(Also, A and z are unchanged; We simply won't write to either.)

Program Verification Example: Binary Search 327/375

Code: The outer loop

(Vi vi((1<i<j<n)— (Ali] < A[])D
1=1; u = n; found = false;

(1)
while (1 <= u and !found) {

(I AN (<wuA —found)) partial-while
m = (1+u) div 2;
(J)
if (A[m] = x) {

..Body omitted...
}
(1) if-then-else

}
partial-while

(I AN—(l<uA —found))
((found N Alm] = x) V (—=found N Vk =(A[k] =x)))

Program Verification Example: Binary Search 328/375

(/)

if (Alm] = x) {
(J A (Am]=1x)) if-then-else
found = true;
(I)

} else if (Alm] < x) {
(JAN—=(Am]|=2) AN (A[m] <x)]) if-then-else
1l = mt+1;
(1)

} else {
(J A —(Alm| =x) AN —=(Alm] < x)) if-then-else
u=m-1;
(1)

}

(1) if-then-else

Invariant for Binary Search
In the loop, there are two cases:

= We have found the target, at position m.

»= We have not yet found the target; if it is present, it must lie beween
A[¢] and A[u] (inclusive).

Expressed as a formula:

(found N Alm| =) V (ﬁfound A Vi ((AM =z)—> (L<i< u))) :
It turns out that the above is more specific than necessary. As the actual
invariant, we shall use the formula

I =(found — Alm] =) A (Vi ((Ali] =2) - ({ <i<u))) .

(Exercise: As you go through the proof, check what would happen if we used the
first formula instead.)

Program Verification Example: Binary Search 330/375

Annotations for while

(Vi Vi ((1<i<j<n) = (Al < A[))D
1=1; u = n; found = false;
((found — Alm] =) A (Vi ((Ali]=2) » (£ <i<wu))))
while (1 <= u && Ifound) {
((found — Alm] =) A (Vi ((Ali]=2) - ({ <i<u))) partial-
A (I <u) A —found) while
(Vi ((Ali]=x) = (£ < i <u)) A=found A (€< | (£ +u)/2] <u))
implied

= (1+u) div 2 ;
(Vi ((A[z] =z)—>(l<i< u)) A —found A (£ <m <wu)) assignment

The last condition is the formula “J": the precondition for the
if-statement.

Program Verification Example: Binary Search 331/375

First Branch of the if-Statement

(Vi ((Ali] =2) = (£ <i<u)) A=found A (£ <m <u))
if (Alm] = x) {
(Vi ((Ali] =2) = (£ <i<u)) A=found A ((<m <u) A (Alm] = z))

if-then-else
((true — Afm] =) A (Vi ((Ali]=2) - (¢ <i<wu)))) implied
found = true;
((found — Alm] =x) A (Vi ((Afi] =2) — ((<i<u)))) assignment
}

The implication is trivial.

Program Verification Example: Binary Search 332/375

Second Branch of the if-Statement

(Vi ((Ali] =2) = (£ <i<u)) A=found A (£ <m <u) A —~(Alm] =z))
if (Alm] < x) {
(Vi ((Afi] =2) > (£ <i <u)) A ~found A (£ <m < u)
N =(A[m] =x) A (Alm] < z))
((found — Alm] =z) A (Vi ((Afi] =2) = (m + 1 <i<u))))
implied

if-then-else

l1=m+1;
((found — A[m]=1z) A (Vi ((A[z] =z)—> L<i< u))) Dassignment
}

To justify the implication, show that A[j] < = whenever ¢ < j <m.

This follows from the condition that A is sorted, together with A[m] < .

Program Verification Example: Binary Search 333/375

An Extended Example: Sorting

Postcondition for Sorting

Suppose the code (., is intended to sort n elements of array A.

Give pre- and postconditions for Cy_,., using a predicate sorted(A,n)
which is true iff A[1] < A[2] < ... < A[n].

First Attempt
(n>1)
C

sort

(sorted(A,n))

Program Verification Extended Example: Sorting 335/375

Postcondition for Sorting

Suppose the code (., is intended to sort n elements of array A.

Give pre- and postconditions for C,__., using a predicate sorted(A,n)
which is true iff A[1] < A[2] < ... < A[n].

First Attempt

(n=>1) (n=>1)

for i =1 ton {
Coort A[i] = 0 ;

}
(sorted(A,n)) (sorted(A,n))

Program Verification Extended Example: Sorting 335/375

Postcondition for Sorting, |l

Let permutation(A, A’,n) mean that array A[1], A[2], ..., A[n]
is a permutation of array A’[1], A’[2],..., A’[n].

(A’ will be a logical variable, not a program variable.)

Second Attempt
(n>1ANA=A4")

Csort

(sorted(A,n) A
permutation(A, A’ n))

Program Verification Extended Example: Sorting 336/375

Postcondition for Sorting, |l

Let permutation(A, A’,n) mean that array A[1], A[2], ..., A[n]
is a permutation of array A’[1], A’[2],..., A’[n].

(A’ will be a logical variable, not a program variable.)

Second Attempt

(n>1ANA=A4") (n>1ANA=A4")
Coort some algorithm on A ;
n=1;

(sorted(A,n) A
permutation(A, A’ n)) (sorted(A,n) A permutation(A, A”,n))

Program Verification Extended Example: Sorting 336/375

Final Attempt (Correct)

sort

(n>1An=nyg ANA=A")
C

(sorted(A,ngy) A permutation(A, A’ ,ng))

«O>» <Fr «=Z»r «E>» Q>

Insertion Sort
= Quicksort

We shall briefly describe two algorithms for sorting.

Each has an “inner loop” which we will then consider.

«O> «F>r «=)r « = = Q>

v

Overview of Insertion Sort

Input: Array A, with indices A[1]... A[n].

Plan: insert each element, in turn, into the array of previously sorted
elements.

Algorithm:

At the start, A[1] is sorted (as an array of length 1).
For each k from 2 to n
Assume the array is sorted up to position £ — 1
Insert A[k] into its correct place among A[l]... A[k — 1]:
Compare it with A[k — 1], A[k — 2], etc., until its proper
place is reached.

Program Verification Extended Example: Sorting 339/375

Possible code for the insertion loop:

i=k;

while (i > 1) {
if (A[i] < A[i-1]) {
t = A[i] ;
A[i] = A[i-1] ;
Ali-1] =t ;
}
i=41i-1;

}

For correctness of this code, see the current assignment.

«O> «F>r «=)r « =) o>

Overview of Quicksort

Quicksort is an ingenious algorithm, with many variations. Sometimes it
works very well, sometimes not so well. We shall ignore most of those
issues, however, and just look at a central step of the algorithm.

Idea:

Select one element of the array, called the pivot.
(Which one? A complicated issue. YMMV.)

Separate the array into two parts: those less than or equal to the
pivot, and those greater than the pivot.

Recursively sort each of the two parts.

Here, we shall focus on the middle step: “partition” the array according to
the chosen pivot.

Program Verification Extended Example: Sorting 341/375

Partitioning an Array

Given: Array X of length n, and a pivot p.

Goal: Put the “small” elements (those less than or equal to p) to the left
part of the array, and the “large” elements (those greater than p) to the
right.

Plan: Scan the array. Upon finding a large element appearing before a
small element, exchange the two.

Requisite: Do all exchanges in a single scan. (Linear time!)

Program Verification Extended Example: Sorting 342/375

Partition: The Algorithm

Idea: keep the array elements in three sections of the array.

= Those known to be small (less than or equal to the pivot).
= Those known to be large (larger than the pivot).
= Unknown elements (not yet examined).

We mark the separations with pointers (indices) a and b, as shown.

small | large unknown
f f
a b

One step of the algorithm:

— If X[b] is small, swap it with X[a] and increment a.
— Increment b.

Program Verification Extended Example: Sorting

343/375

(n=>1)
a=1;
while (a < n && X[a]l <=p) { // Initialize
a=a+1;
}
b=a+1;

while (b <=n) {

if (X[b] <=p) { // Swap if needed
t = X[b] ; X[b] = X[a] ; X[a] =t ;
a a+1;

X
b=b+1;
}

(Elz((l <z<n+1)A(X[1l..2) <p) A (X][z2..n] >p)))

Notation: “X[j..k)..." means “X[i] ..., for each j <14 < k"
“Xl[j..k|..." means “X[i] ..., for each j < i < k"

o T = = T 9Dace

Desired postcondition for the first loop:

((X[1.a)<p) A ((a=n) v (X[a] >p)) D -

Annotation for the while, and pushing up, yields

((X[1..1)<p)) implied
a=1;
((X[1.a)<p)) assignment
while (a < n && X[a] <=p) {
((X[1..a)<p)A((a<n)A(X[a]<p))) partia-uhile
((X[1.a+1)<p)) implied
a=a+1;
((X[1..a)<p)) assignment
}

((X[1..a)<p)A ((a >n)V (Xa] > p))) partial-while

«O> «F>r «=)r « =) = o>

For the second while-loop, a good candidate for the invariant is

(X[1l..a) <p) A (X[a..b) >p) .

Let’s see if this works....

Colour key:
Greenish: lower part of the array
Blueish: upper part of the array
Either, reddened: result of a substitution
Reddish:

condition from guards

«O> «F>r «=)r « =)

DA

“And" the loop guard to the invariant at the start of the loop.
Then pushing up through the assignment and if yields
((X[1l..a)<p)A(X]a..b)>p)A(b<n))
if (X[b] <= p) {

((X[1l..a)<p) A (X[a..b)>p)AN(b<n)AX[b]<p)
if-then
}
((X[1l..a)<p)A (X[a..b+1)>Dp))
b=b+1
(

if-then + implied
(X[1..a)<p) A (X[a..b)>p)) assignment
«O> «F>r «=)r « =) = o>
~ Program Verification Extended Example: Sorting ~ 347/375

Inside the if-Statement

Push up for the assignments inside the if:

((X[1..a)<p)A(X[a..b)>p) A (b<n)AX[b]<p)

if-then
((X[1..a)<p)) A (X][a] >p) A (X[a+1..b)>p) A X[b]<p)
implied
t = X[b] ; X[b] = X[a] ; X[a] =t ;
0 ((X[1.-a) < p)) A (X[a] < p) A (X[a +1.5) > p) A X[b] > p)
swap
((X[1.a+1)<p)A(X[a+1..0+1)>p))
implied
a=a+1;
((X[1..a)<p) A (X[a..b+1)>p)) assignment

(The extra “implied” just makes the “swap” clearer.)

Program Verification Extended Example: Sorting 348/375

Putting It All Together

The annotation thus far works fine. But there is a “glitch”....

Between the loops, we have

((X[l.a)<p)A ((a >n) V (X]d] >p)>) partial-while

((X[l.a)<p) A (X[a.a+1)>p)) implied
b=a+1;

((X[l.a)<p) A (Xa..b) >p)) assignment

But the "“implied” fails in the case that the first loop ended with a =n —
we can't deduce Xla] > p.
Solution: either

» add an extra test to the code, or

» add 1 <a <mn to the first invariant, and modify the second
to (X[1..a) <p) A ((a=n) V (X[a..b) > p)).

Program Verification Extended Example: Sorting 349/375

Second while-Loop: Full annotation

((1<a<n)A(X[l..a)<p)A ((a >n)V (X[a] >p))) partial-while
((X[1..a)<p)A((a=n)V (X[a.a+1)>p))) implied
b=a+1
((X[1l..a)<p)A ((a =n)V (X[a..b) >p)>) assignment
while (b <=n) {
((X[1l..a)<p)A ((a =n)V (Xa..b) > p)) A(b<n)) partial-while
((X[1..a)<p) A (X[a..b)>p)A(b<n)) implied
if (X[b] <=p) {
¥
((X[1l..a)<p)A(X[a..b)>Dp)) if-then
((X[1l..a)<p)A ((a =n)V (Xla..b) >p))) implied
}

((X[1..a)<p)A ((a =n)V (X[a..b) >p)> Ab>n)) partial-while
(3= ((1 <z<n+1)A(X][1..2) <p) A (X][z..n] >p)> D implied

“Implied” proofs left to you.

Program Verification Extended Example: Sorting 350/375

	Program Verification
	Program States and Correctness
	Proving Correctness: Assignments
	Conditionals
	while-Loops
	Arrays
	Example: Binary Search
	Extended Example: Sorting

	Computability and Undecidability
	Computability
	Decision Problems
	The Halting Problem
	Other Undecidable Problems

