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Program Verification

Reference: Huth & Ryan, Chapter 4
Program correctness: does a given program satisfy its
specification—does it do what it is supposed to do?
Techniques for showing program correctness:

inspection, code walk-throughs
testing

black box: tests designed independent of code
while box: tests designed based on code

formal verification
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Program Verification

”Testing can be a very effective way to show the presence of
bugs, but it is hopelessly inadequate for showing their absence.”

[E. Dijkstra, 1972.]

Testing is not proof!
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Testing versus Formal Verification

Testing:
check a program for carefully chosen inputs (e.g., boundary
conditions, etc.)
in general: cannot be exhaustive

Formal verification:
formally state a specification (logic, set theory), and
prove a program satisfies the specification for all inputs

although undecidable (= no algorithm) in general, we will study
some useful techniques
part of Software Engineering
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Why Formal Verification?

Why formally specify and verify programs?

Reduce bugs
Safety-critical software or important components
(e.g., brakes in cars, nuclear power plants)
Documentation

necessary for large multi-person, multi-year software projects
good documentation facilitates code re-use

Current Practice
specifying software is widespread practice
formally verifying software is less widespread
hardware verification is commmon
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Some Software Bugs

Therac-25, X-ray, 1985
overdosing patients during radiation treatment, 5 dead
reason: race condition between concurrent tasks

AT&T, 1990
long distance service fails for 9 hours
reason: wrong BREAK statement in C code

Patriot-Scud, 1991
28 dead and 100 injured
reason: rounding error

Pentium Processor, 1994
error in division algorithm
reason: incomplete entries in a look-up table
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Some Software Bugs

Ariane 5, 1996
exploded 37 seconds after takeoff
reason: data conversion of a too large number

Mars Climate Orbiter, 1999
destroyed on entering atmosphere of Mars
reason: mixture of pounds and kilograms

Power black-out, 2003
50 million people in Canada and US without power
reason: programming error

Royal Bank, 2004
financial transactions disrupted for 5 days
reason: programming error
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Some Software Bugs

UK Child Support Agency, 2004
overpaid 1.9 million people, underpaid 700,000, cost to taxpayers
over $1 billion
reason: more than 500 bugs reported

Science (a prestigious scientific journal), 2006
retraction of research papers due to erroneous research results
reason: program incorrectly flipped the sign (+ to -) on data

Toyota Prius, 2007
160,000 hybrid vehicles recalled due to stalling unexpectedly
reason: programming error

Knight Capital Group, 2012
high-frequency trading system lost $440 million in 30 min
reason: programming error
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Framework for software verification

The steps of formal verification:

1 Convert the informal description R of requirements for an
application domain into an “equivalent” formula ΦR of some
symbolic logic,

2 Write a program P which is meant to realise ΦR in some given
programming environment, and

3 Prove that the program P satisfies the formula ΦR .

We shall consider only the third part in this course.
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Core programming language

We shall use a subset of C/C++ and Java.
It contains their core features:

integer and Boolean expressions
assignment
sequence
if-then-else (conditional statements)
while-loops
for-loops
arrays
functions and procedures
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Program States

We are verifying imperative, sequential, transformational programs.

imperative: sequence of commands which modify the values of
variables
sequential: no concurrency
transformational: given inputs, compute outputs and terminate
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Imperative programs

Imperative programs manipulate variables.
The state of a program is the values of the variables
at a particular time in the execution of the program.
Expressions evaluate relative to the current state of the program.
Commands change the state of the program.
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Example

We shall use the following code as an example.

Compute the factorial of input x and store in y.

y = 1;
z = 0;

−→ while (z != x) {
z = z + 1;
y = y ∗ z;

}

State at the “while” test:
Initial state s0: z=0, y=1
Next state s1: z=1, y=1
State s2: z=2, y=2
State s3: z=3, y=6
State s4: z=4, y=24
...

Note: the order of “z = z + 1” and “y = y * z” matters!
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Specifications

Example.

Compute a number y whose square is less than the input x .

What if x =−4?

Revised example.

If the input x is a positive number, compute a number whose
square is less than x .

For this, we need information not just about the state after the program
executes, but also about the state before it executes.
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Hoare Triples

Our assertions about programs will have the form

(|P |) — precondition

C — program or code

(|Q |) — postcondition

The meaning of the triple (|P |) C (|Q |)

If program C is run starting in a state that satisfies P , then the
resulting state after the execution of C will satisfy Q.

An assertion (|P |) C (|Q |) is called a Hoare triple.
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Syntax of Hoare Triples

Conditions P and Q are written in predicate logic of integers
Use predicates <, =, functions +,−,∗ and others derivable from
these
Tony Hoare (C.A. R. Hoare), b. 1934
famous for Quicksort and program verification
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Specification of a Program

A specification of a program C is a Hoare triple with C as the second
component: (|P |) C (|Q |).

Example. The requirement

If the input x is a positive number, compute a number whose
square is less than x

might be expressed as

(|x > 0 |) C (|y · y < x |) .
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Specification Is Not Behaviour

Note that a triple (|x > 0 |) C (|y ∗ y < x |) specifies neither a unique
program C nor a unique behaviour.

C1: y = 0 ;

C2: y = 0 ;
while (y * y < x) {

y = y + 1 ;
}

y = y - 1 ;

Better postcondition

(y ∗ y < x) ∧ ∀z((z ∗ z < x)−→ z ≤ y)
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Hoare triples

We want to develop a notion of proof that will allow us to prove that a
program C satisfies the specification given by the precondition P and
the postcondition Q.

The proof calculus is different from the proof calculus in first-order
(predicate) logic, since it is about proving triples, which are built from
two different kinds of things:

logical formulas: P , Q, and
code C
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Partial correctness

A triple (|P |) C (|Q |) is satisfied under partial correctness, denoted

|=par (|P |) C (|Q |) ,

if and only if

for every state s that satisfies condition P ,

if execution of C starting from state s terminates in a state s ′,

then state s ′ satisfies condition Q.
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Partial correctness

In particular, the program

while true { x = 0; }

satisfies all specifications!

It is an endless loop and never terminates, but partial correctness only
says what must happen if the program terminates.
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Total correctness

A triple (|P |) C (|Q |) is satisfied under total correctness, denoted

|=tot (|P |) C (|Q |) ,

if and only if

for every state s that satisfies P ,

execution of C starting from state s terminates,

and the resulting state s ′ satisfies Q.

Total Correctness = Partial Correctness + Termination
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Examples for Partial and Total Correctness

Example 1.

(|x = 1 |)
y=x;
(|y = 1 |)

Total correctness satisfied.

Example 2.

(|x = 1 |)
y=x ;
(|y = 2 |)

Neither total nor partial correctness satisfied.

CS245 (Winter 2016) Program verification March 31, 2016 25 / 88



Examples for Partial and Total Correctness

Example 3.

(|x = 1 |)
while (true) {

x = 0 ;
}
(|x > 0 |)

Infinite loop (partial correctness)
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Partial and Total Correctness

Example 4.

(|x ≥ 0 |)
y = 1 ;
z = 0 ;
while (z ! = x) {

z = z + 1 ;
y = y ∗ z ;

}
(|y = x! |)

Total correctness

What happens if we remove pre-condition (replace with “true”)?

Partial correctness but not total correctness: C loops forever on negative
input
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Examples for Partial and Total Correctness

Example 5.

(|x ≥ 0 |)
y = 1 ;
while (x ! = 0) {

y = y ∗ x ;
x = x − 1 ;

}
(|y = x! |)

No correctness, because input altered (“consumed”)
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Partial correctness is really weak

Give a program that is partially correct for any pre- and post-conditions

(|P |)
while (true){

x = 0
}
(|Q |)

The program never terminates so partial correctness is vacuously true.
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Partial correctness is really weak

At the other extreme, consider

(| true |)
C
(| true |)

Suppose

C never terminates partial correctness
C sometimes terminates partial correctness
C always terminates total correctness
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Logical variables

Sometimes in our specifications (pre- and post- conditions) we will need
additional variables that do not appear in the program.

These are called logical variables.

Example.

(| x = x0 ∧ x0≥ 0 |)
y = 1;
while (x != 0) {

y = y ∗ x;
x = x − 1;

}
(| y = x0! |)

For a Hoare triple, its set of logical
variables are those variables that are
free in P or Q and do not occur
in C .
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Partial and Total Correctness in Logic

We can write the conditions for partial and total correctness in predicate
logic:

States(s) - Predicate: “s is an element of the set of states”
Satisfies(s ,P) - Predicate: “State s satisfies condition P”
Terminates(C , s): Predicate: “code C terminates when execution
begins in state s”
result(C , s): function: the state that results from executing code C
beginning in state s, if C terminates (undefined otherwise)
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Partial and Total Correctness in Logic

Partial correctness of Hoare triple (|P |) C (|Q |):

∀s[States(s)−→ (Satisfies(s ,P) ∧ Terminates(C , s)−→
Satisfies(result(C , s),Q))]

Total correctness of Hoare triple

∀s[States(s)−→ (Satisfies(s ,P)−→ Terminates(C , s) ∧
Satisfies(result(C , s),Q))]
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Proving correctness

Total correctness is our goal.
We usually prove it by proving partial correctness and termination
separately.

For partial correctness, we shall introduce sound inference rules.
Proving termination is often easy, but not always
(in general, it is undecidable)
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Partial and Total Correctness

Why do we separate into partial/total correctness?
Both are undecidable, i.e., there is no algorithm to solve them
There are different techniques for partial and total correctness
We will look at a proof system for proving partial correctness
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Proving Partial Correctness

Recall the definition of Partial Correctness:

For every starting state which satisfies P and for which C
terminates, the final state satisfies Q.

How do we show this, if there are a large or infinite number of possible
states?

Answer: Inference rules (proof rules, like in formal deduction)

Rules for each construct in our programming language.
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What will a Proof Look Like

An annotated program with conditions before and after every program
statement. Each Hoare triple (condition, program statement, condition)
will have a justification.

(|precondition |)
y = 1;
(| . . . |) 〈justification〉
while (x != 0) {

(| . . . |) 〈justification〉
y = y * x;
(| . . . |) 〈justification〉
x = x - 1;
(| . . . |) 〈justification〉

}
(|postcondition |) 〈justification〉
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Inference Rule for Assignment

(|Q[E/x ] |) x= E (|Q |)
(assignment)

Intuition:

Q(x) will hold after assigning (the value of) E to x if
Q(E ) was true initially.

Note: Normally, Q will be a formula with variable x in it, Q(x)
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Assignment: Example

Example.

`par (|y + 1 = 7 |) x = y + 1 (|x = 7 |)

by one application of the assignment rule.
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Examples for Assignment

Example 1.

(|y = 2 |) (|P[E/x ] |)
x = y ; x = E ;
(|x = 2 |) (|P |)

Here P is “x = 2”, E = y , P[y/x ] is “y = 2”.

Example 2.

(|0< 2 |) (|P[E/x ] |)
x = 2 ; x = E ;
(|0< x |) (|P |)

Here P is “0< x”, E = 2, P[2/x ] is “0< 2”
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Examples of Assignment

Example 3.

(|x + 1 = 2 |) (| (x = 2)[(x + 1)/x ] |)
x = x + 1; x = x + 1;
(|x = 2 |) (|x = 2 |)

Here P is “x = 2”, E = x + 1

Example 4.

(|x + 1 = n + 1 |)
x = x + 1;
(|x = n + 1 |)

Here P is “x = n + 1”, E = x + 1
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Note about Examples

In program correctness proofs, we usually work backwards from the
postcondition:

?? (|P[E/x ] |)
x = y; x = E ;
(|x > 0 |) (|P |)
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Inference Rules with Implications

Precondition strengthening:

P → P ′ (|P ′ |) C (|Q |)
(|P |) C (|Q |)

(implied)

Postcondition weakening:

(|P |) C (|Q ′ |) Q ′→Q
(|P |) C (|Q |)

(implied)
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Example

P → P ′ (|P ′ |) C (|Q |)
(|P |) C (|Q |)

(implied)

(|y = 6 |)
(|y + 1 = 7 |) implied
x = y + 1
(|x = 7 |) assignment

Here: P is y = 6

P ′ is y + 1 = 7

C is x = y + 1

Q is x = 7

Note that here P↔ P ′

CS245 (Winter 2016) Program verification March 31, 2016 44 / 88



Example

(|P |) C (|Q ′ |) Q ′→Q
(|P |) C (|Q |)

(implied)

(|y + 1 = 7 |)
x = y+1
(|x = 7 |)
(|x ≤ 7 |) implied

Here: P is y + 1 = 7

C is x = y + 1

Q ′ is x = 7

Q is x ≤ 7.

In this case, Q ′ −→Q but the converse is not true.
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Inference Rule for Sequences of Instructions

(|P |) C1 (|Q |), (|Q |) C2 (|R |)
(|P |) C1; C2 (|R |)

(composition)

In order to prove (|P |) C1; C2 (|R |), we need to find a midcondition Q
for which we can prove (|P |) C1 (|Q |) and (|Q |) C2 (|R |).

(In our examples, the mid-condition will usually be determined by a rule, such
as assignment. But in general, a mid-condition might be very difficult to
determine.)
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Inference rules with sequence of instructions allow us to string
together pre/postconditions and lines of code
Each condition is the postcondition of the previous line of code and
the precondition of the next line of code
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Proof Format: Annotated Programs

Interleave program statements with assertions (= conditions), each
justified by an inference rule.
The composition rule is implicit.
Each assertion should hold whenever the program reaches that
point in its execution.
Each assertion is justified by an inference rule

If implied inference rule is used, we also need to prove the
implication. This is done after annotating the program.
don’t simplify assertions in the annotated program. Do them as
implied inferences.
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Example: Composition of Assignments

To show: the following is satisfied under partial correctness.

We work bottom-up for assignments. . .

(|x = x0 ∧ y = y0 |)
(|y = y0 ∧ x = x0 |) (|P3[x/t] |)
t = x ;
(|y = y0 ∧ t = x0 |) P3 = (|P2[y/x ] |)
x = y ;
(|x = y0 ∧ t = x0 |) P2 = (|P[t/y ] |)
y = t ;
(|x = y0 ∧ y = x0 |) assignment (|P |)

Finally, show (|x = x0 ∧ y = y0 |) implies (|y = y0 ∧ x = x0 |).
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Example 1 and Comments

(|y = 5 |)
(|y + 1 = 6 |) implied
x = y+1;
(|x = 6 |) assignment

The proof is constructed from the bottom upwards
We start with x = 6 and, using the assignment rule, we push it
upwards through (the assignment) x = y + 1
This means substituting y + 1 for all occurrences of x , resulting in
y + 1 = 6
Now compare this with the given precondition y = 5.
The given precondition and the arithmetic fact that 5+1 =6 imply
it, so we have finished the proof
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Example 1 and Comments

Although the proof is constructed bottom-up, its justifications make
sense when read top-down
The 2nd line is implied by the 1st line
The 4th line follows from the 2nd, by the intervening assignment
x = y + 1
Note that implied always refers to the immediately preceding line
Proofs in program logic generally combine two logical levels

The 1st is directly concerned with proof rules for programming
constructs, such as the assignment statement
The 2nd level is ordinary logic derivations (as familiar from
propositional and predicate logic) plus facts from arithmetic.

CS245 (Winter 2016) Program verification March 31, 2016 51 / 88



Example 2 and Comments

(|y < 3 |)
(|y + 1< 4 |) implied
y = y+1;
(|y < 4 |) assignment

We may use ordinary logical and arithmetic implications to change a
certain condition ϕ to any condition ϕ′ which is implied by ϕ (that
is, ϕ −→ ϕ′) for reasons which have nothing to do with the code
Here, ϕ was y < 3 and the implied formula ϕ′ was y + 1< 4.
The validity of this implication is rooted in general facts about
integers and the relation <.
Completely formal proofs would require separate proofs attached to
all instances of the rule implied.
We will not always do that.
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Programs with Conditional Statements
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Deduction Rules for Conditionals

if-then-else:

(|P ∧ B |) C1 (|Q |) (|P ∧ ¬B |) C2 (|Q |)
(|P |) if (B) C1 else C2 (|Q |)

(if-then-else)

if-then (without else):

(|P ∧ B |) C (|Q |) (P ∧ ¬B)→Q
(|P |) if (B) C (|Q |)

(if-then)
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Template for Conditionals With else

Annotated program template for if-then-else:

(|P |)
if ( B ) {

(|P ∧ B |) if-then-else
C1
(|Q |) (justify depending on C1—a “subproof”)

} else {
(|P ∧ ¬B |) if-then-else
C2
(|Q |) (justify depending on C2—a “subproof”)

}
(|Q |) if-then-else [justifies this Q, given previous two]
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Template for Conditionals Without else

Annotated program template for if-then:

(|P |)
if ( B ) {

(|P ∧ B |) if-then
C
(|Q |) [add justification based on C ]

}
(|Q |) if-then

Implied: Proof of P ∧ ¬B →Q
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Example: Conditional Code

Example: Prove the following is satisfied under partial correctness.

(| true |) (|P |)

if ( max < x ) { if ( B ) {
max = x ; C

} }

(|max ≥ x |) (|Q |)

First, let’s recall our proof method. . . .
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The Steps of Creating a Proof

Three steps in doing a proof of partial correctness:

1 First annotate using the appropriate inference rules.
2 Then ”back up” in the proof: add an assertion before each

assignment statement, based on the assertion following the
assignment.

3 Finally prove any “implieds”:
Annotations from (1) above containing implications
Adjacent assertions created in step (2).

Proofs here can use predicate logic, basic arithmetic, or other
appropriate reasoning.
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Doing the Steps

1 Add annotations for the if-then statement.
2 “Push up” for the assignments.
3 Identify “implieds” to be proven.

(| true |)

if ( max < x ) {
(| true ∧max < x |) if-then
(|x ≥ x |) Implied (a)
max = x ;
(|max ≥ x |) ←− to be shown

}

(|max ≥ x |) if-then
Implied:
�

true ∧ ¬(max < x)
�

→max ≥ x
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Proving “Implied” Conditions

The auxiliary “implied” proofs can be done by Natural Deduction (and
assuming the necessary arithmetic properties). We will use it informally.

Proof of Implied (a):

`
�

(true ∧ (max < x)
�

→ x ≥ x .

Clearly x ≥ x is a tautology and the implication holds.
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Implied (b)

Proof of Implied (b): Show ` (P ∧ ¬B)→Q, which is

; `
�

true ∧ ¬(max < x)
�

→ (max ≥ x) .

1.
�

true ∧ ¬(max < x)
�

`
�

true ∧ ¬(max < x)
�

(∈)

2.
�

true ∧ ¬(max < x)
�

` ¬(max < x)
�

(1,∧ −)

3.
�

true ∧ ¬(max < x)
�

` (max ≥ x) (def .of ≥)

4. ; `
�

true ∧ ¬(max < x)
�

→ (max ≥ x)
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Example 2 for Conditionals

Prove the following is satisfied under partial correctness.

(| true |)
if (x > y) {

max = x;
} else {

max = y;
}
(| (x > y ∧max = x) ∨ (x ≤ y ∧max = y) |)
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Example 2: Annotated Code

(| true |)
if (x > y) {

(|x > y |) if-then-else
(| (x > y ∧ x = x) ∨ (x ≤ y ∧ x = y) |) implied (a)
max = x ;
(| (x > y ∧max = x) ∨ (x ≤ y ∧max = y) |) assignment

} else {
(|¬(x > y) |) if-then-else
(| (x > y ∧ y = x) ∨ (x ≤ y ∧ y = y) |) implied (b)
max = y ;
(| (x > y ∧max = x) ∨ (x ≤ y ∧max = y) |) assignment

}
(| (x > y ∧max = x) ∨ (x ≤ y ∧max = y) |) if-then-else
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Example 2: Implied Conditions

(a) Prove ; ` x > y → (x > y ∧ x = x) ∨ (x ≤ y ∧ x = y)

1. x > y ` x > y (∈)

2. ; ` x = x (≈+)

3. x > y ` x = x (2, +)

4. x > y ` x > y ∧ x = x (1,3,∧+)

5. x > y ` (x > y ∧ x = x) ∨ (x ≤ y ∧ x = y) (4,∨+)

6. ; ` x > y → (x > y ∧ x = x) ∨ (x ≤ y ∧ x = y) (4,→+)
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Example 2 for Conditionals

(b) Prove x ≤ y →
�

(x > y ∧ x = x) ∨ (x ≤ y ∧ y = y)
�

.

1. x ≤ y ` x ≤ y (∈)

2. ; ` y = y (≈+)

3. x ≤ y ` y = y (2, +)

4. x ≤ y ` x ≤ y ∧ y = y (1,3,∧+)

5. x ≤ y ` (x > y ∧ x = x) ∨ (x ≤ y ∧ y = y) (4,∨+)

6. ; ` x ≤ y → (x > y ∧ x = x) ∨ (x ≤ y ∧ y = y) (5,→+)
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While-Loops and Total Correctness
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Inference Rule: Partial-while

“Partial while”: do not (yet) require termination.

(| I ∧ B |) C (| I |)
(| I |) while (B) C (| I ∧ ¬B |)

(partial-while)

In words:

If the code C satisfies the triple (| I ∧ B |) C (| I |),
and I is true at the start of the while-loop,
then no matter how many times we execute C ,
condition I will still be true.

Condition I is called a loop invariant.

After the while-loop terminates, ¬B is also true.

CS245 (Winter 2016) Program verification March 31, 2016 67 / 88



Annotations for Partial-while

(|P |)
(| I |) Implied (a)
while ( B ) {

(| I ∧ B |) partial-while
C
(| I |) ←− to be justified, based on C
}

(| I ∧ ¬B |) partial-while
(|Q |) Implied (b)

(a) Prove P → I (precondition P implies the loop invariant)

(b) Prove (I ∧ ¬B)→Q (exit condition implies postcondition)

We need to determine I !!

CS245 (Winter 2016) Program verification March 31, 2016 68 / 88



Loop Invariants

A loop invariant is an assertion (condition) that is true both before and
after each execution of the body of a loop.

True before the while-loop begins.
True after the while-loop ends.
Expresses a relationship among the variables used within the body
of the loop. Some of these variables will have their values changed
within the loop.
An invariant may or may not be useful in proving termination
(to discuss later).
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Example: Finding a loop invariant

(|x ≥ 0 |)
y = 1 ;
z = 0 ;

−→ while (z != x) {
z = z + 1 ;
y = y * z ;

}
(|y = x! |)

At the while statement:

x y z z 6= x
5 1 0 true
5 1 1 true
5 2 2 true
5 6 3 true
5 24 4 true
5 120 5 false

From the trace and the post-condition,
a candidate loop invariant is y = z!

Why are y ≥ z or x ≥ 0 not useful?

These do not involve the loop-termination condition.
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Annotations Inside a while-Loop

1 First annotate code using the while-loop inference rule, and any
other control rules, such as if-then.

2 Then work bottom-up (“push up”) through program code.
Apply inference rule appropriate for the specific line of code, or
Note a new assertion (“implied”) to be proven separately.

3 Prove the implied assertions using the inference rules of ordinary
logic.
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Example: annotations for partial-while
Annotate by partial-while, with chosen invariant (y = z!). Annotate
assignment statements (bottom-up). Note the required implied conditions.

(|x ≥ 0 |)
(|1 = 0! |) implied (a)
y = 1 ;
(|y = 0! |) assignment
z = 0 ;
(|y = z! |) assignment
while (z != x) {

(| (y = z!) ∧ ¬(z = x) |) partial-while ((| I ∧ B |))
(|y(z + 1) = (z + 1)! |) implied (b)
z = z + 1 ;
(|yz = z! |) assignment
y = y * z ;
(|y = z! |) assignment

}
(|y = z! ∧ z = x) |) partial-while ((| I ∧ ¬B |))
(|y = x! |) implied (c)
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Example: implied conditions (a) and (c)

Proof of implied (a): (x ≥ 0) ` (1 = 0!).

By definition of factorial.

Proof of implied (c):
�

(y = z!) ∧ (z = x)
�

` (y = x!).

1. (y = z!) ∧ (z = x) ` (y = z!) ∧ (z = x) (∈)

2. (y = z!) ∧ (z = x) ` (y = z!) (1,∧ −)

3. (y = z!) ∧ (z = x) ` (z = x) (1,∧ −)

4. (y = z!) ∧ (z = x) ` (y = x!) (2,3,≈−)
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Example: implied condition (b)

Proof of implied (b):
�

(y = z!) ∧ ¬(z = x)
�

` (z + 1)y = (z + 1)! .

1. y = z! ∧ z 6= x ` y = z! ∧ z 6= x (∈)

2. y = z! ∧ z 6= x ` y = z! (1,∧ −))

3. (z + 1)y = (z + 1)z! (2,algebra)

4. (z + 1)z! = (z + 1)! (def . of factorial)

5. (z + 1)y = (z + 1)! (3,4, transitivity of equality)
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Example 2 (Partial-while)

Prove the following is satisfied under partial correctness.

(|n≥ 0 ∧ a≥ 0 |)
s = 1 ;
i = 0 ;
while (i < n) {

s = s * a ;
i = i + 1 ;

}
(| s = an |)

Trace of the loop:
a n i s
2 3 0 1
2 3 1 1∗2
2 3 2 1∗2∗2
2 3 3 1∗2∗2∗2

Candidate for the loop invariant: s = ai .
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Example 2: Testing the invariant

Using s = ai as an invariant
yields the annotations shown
at right.

Next, we want to
Push up for assignments
Prove the implications

But: implied (c) is false!

We must use a different
invariant.

(|n≥ 0 ∧ a≥ 0 |)
(| . . . |)
s = 1 ;
(| . . . |)
i = 0 ;
(| s = ai |)
while (i < n) {

(| s = ai ∧ i < n |) partial-while
(| . . . |)
s = s * a ;
(| . . . |)
i = i + 1 ;
(| s = ai |)
}
(| s = ai ∧ i ≥ n |) partial-while
(| s = an |) implied (c)
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Example 2: Adjusted invariant

Try a new invariant:

s = ai ∧ i ≤ n .

Now the “implied”
conditions are
actually true, and the
proof can succeed.

(|n≥ 0 ∧ a≥ 0 |)
(|1= a0 ∧ 0≤ n |) implied (a)
s = 1 ;
(| s = a0 ∧ 0≤ n |) assignment
i = 0 ;
(| s = ai∧ i ≤ n |) assignment
while (i < n) {

(| s = ai∧ i ≤ n ∧ i < n |) partial-while
(| s · a = ai+1 ∧ i + 1≤ n |) implied (b)
s = s * a ;
(| s = ai+1 ∧ i + 1≤ n |) assignment
i = i + 1 ;
(| s = ai∧ i ≤ n |) assignment

}
(| s = ai∧ i ≤ n ∧ i ≥ n |) partial-while
(| s = an |) implied (c)
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Total Correctness (Termination)

Total Correctness = Partial Correctness + Termination

Only while-loops can be responsible for non-termination in our
programming language.

(In general, recursion can also cause it).

Proving termination:
For each while-loop in the program,

Identify an integer expression which is always non-negative and
whose value decreases every time through the while-loop.
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Example For Total Correctness

The code below has a “ loop guard ” of z 6= x ,
which is equivalent to x − z 6= 0.

What happens to the value of x − z during execution?

(|x ≥ 0 |)
y = 1 ;
z = 0 ;

At start of loop: x − z = x ≥ 0
while ( z != x ) {

z = z + 1 ; x − z decreases by 1
y = y * z ; x − z unchanged

}
(|y = x! |)

Thus the value of x − z will eventually reach 0.
The loop then exits and the program terminates.
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Proof of Total Correctness

We chose an expression x − z (called the variant).

At the start of the loop, x − z ≥ 0:

Precondition: x ≥ 0.
Assignment z ← 0.

Each time through the loop:

x doesn’t change: no assignment to it.
z increases by 1, by assignment.
Thus x − z decreases by 1.

Thus the value of x − z will eventually reach 0.

When x − z = 0, the guard z ! = x ends the loop.
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Total Correctness Problem

Total Correctness Problem: Given a Hoare triple (|P |) C (|Q |) is it
totally correct?

Theorem The Total Correctness Problem is undecidable.

Proof:

Reduce the Blank-Tape Halting Problem to our problem.
Suppose we have an algorithm A to solve the Total Correctness
Problem.
We can use it to solve the Blank-Tape Halting Problem.
Given program C as input, we can use our algorithm A to test if
(| true |) C (| true |) is totally correct.
Claim: The program C halts on a blank tape iff this Hoare triple is
totally correct.
Contradiction since the Blank-Tape Halting Problem is undecidable.

CS245 (Winter 2016) Program verification March 31, 2016 81 / 88



Partial Correctness Problem

Partial Correctness Problem: Given a Hoare triple (|P |) C (|Q |) is it
partially correct?

Theorem The Partial Correctness Problem is undecidable.

Proof:
Reduce the Blank-Tape Halting Problem to our problem.
Suppose we have an algorithm A to solve the Partial Correctness
Problem. We can use it to solve the Blank-Tape Halting Problem
for any program C as follows.
Given program C as input, make a new program C ′ by adding a
new line at the end of the program C (here x is a new variable):

x = 1;

Claim: The Hoare Triple (| true |) C ′ (|x=0 |) is partially correct iff C ′

does not halt.
Contradiction since the Blank-Tape Halting Problem is undecidable.
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Comments

Where did our method for proving partial/total correctness fail to
be an algorithm?

finding an invariant for while loops
finding a variant to prove that while loops terminate
proving the implied conditions - recall that validity in first order
(predicate) logic is undecidable.
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Logic and Computation:
Summary
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Propositional Logic

Translations from English to propositional logic formulas
Syntax - well formed formulas, structural induction
Semantics (truth tables, value assignments)
Proving validity of arguments expressed in propositional logic
(by truth tables or by contradiction)
Propositional calculus laws and normal forms (CNF, DNF)
Adequate sets of connectives
Applications of propositional logic: Logic gates, circuits, code
simplification
Formal (natural) deduction, 11 rules, its soundness and
completeness
Resolution
Davis Putnam Procedure, its soundness and completeness
Solving the Satisfiability problem with DNA computing
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Predicate logic (first-order logic)

Translations from English to predicate logic formulas
Syntax - well-formed formulas in predicate logic
Semantics - interpretations, domains, satisfiability, validity
Proving validity of arguments expressed in predicate logic
Formal deduction for predicate logic (17 rules)
Resolution theorem proving
Soundness and completeness of formal deduction for predicate
logic (Godel)
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Undecidability, Applications and Implications

Undecidability, Halting Problem, other undecidable problems
Applications and implications of predicate logic

Peano Arithmetic
Godel’s Incompleteness Theorem
Program Verification

Solve logical puzzles and debug invalid arguments

What’s wrong with this argument?
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Use Logic Wisely!

- THE END -
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