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Learning goals

Semantic entailment

• Define semantic entailment.
• Explain subtleties of semantic entailment.
• Determine whether a semantic entailment holds by using truth tables,

valuation trees, and/or logical identities.
• Prove semantic entailment using truth tables and/or valuation trees.

Natural deduction in propositional logic

• Describe rules of inference for natural deduction.
• Prove a conclusion from given premises using natural deduction

inference rules.
• Describe strategies for applying each inference rule when proving a

conclusion formula using natural deduction.

Entailment 2/55



A review of the conditional

Consider the formulas 𝑝1 ∧ 𝑝2 ∧ 𝑝3 and 𝑐.

The following two statements are equivalent:

• for any truth valuation 𝑡, if (𝑝1 ∧ 𝑝2 ∧ 𝑝3) is true, then 𝑐 is true.
• (𝑝1 ∧ 𝑝2 ∧ 𝑝3) → 𝑐 is a tautology.
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Subtleties about the conditional

Consider the formulas 𝑝1 ∧ 𝑝2 ∧ 𝑝3 and 𝑐. How many of the following
statements are true?

a. If 𝑝1 is false, then (𝑝1 ∧ 𝑝2 ∧ 𝑝3) → 𝑐 is true.
b. If 𝑝1 = 𝑥 and 𝑝2 = (¬𝑥), then (𝑝1 ∧ 𝑝2 ∧ 𝑝3) → 𝑐 is false.
c. If 𝑐 is a tautology, then (𝑝1 ∧ 𝑝2 ∧ 𝑝3) → 𝑐 is true.
d. Two of (a), (b), and (c) are true.
e. All of (a), (b), and (c) are true.
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Proving arguments valid

Recall that logic is the science of reasoning.

One important goal of logic is to infer that a conclusion is true based on a
set of premises.

A logical argument:

Premise 1

Premise 2

...

Premise n

———

Conclusion

A common problem is to prove that an argument is valid, that is the set of
premises semantically entails the conclusion.
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Formalizing argument validity: Semantic Entailment

Let Σ = {𝑝1, 𝑝2, ..., 𝑝𝑛} be a set of premises and let 𝛼 be the conclusion
that we want to derive.

Σ semantically entails 𝛼, denoted Σ ⊨ 𝛼, if and only if

• Whenever all the premises in Σ are true, then the conclusion 𝛼 is true.
• For any truth valuation 𝑡, if every premise in Σ is true under 𝑡, then

the conclusion 𝛼 is true under 𝑡.
• For any truth valuation 𝑡, if 𝑡 satisfies Σ (denoted Σ𝑡 = T), then 𝑡

satisfies 𝛼 (𝛼𝑡 = T).
• (𝑝1 ∧ 𝑝2 ∧ ... ∧ 𝑝𝑛) → 𝛼 is a tautology.

If Σ semantically entails 𝛼, then we say that the argument (with the
premises in Σ and the conclusion 𝛼) is valid.

What does Σ𝑡 = T (𝑡 satisfies Σ) mean? See the next slide.
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What does Σ𝑡 = T mean?

Σ𝑡 = T (𝑡 satisfies Σ) means ...

• Every formula in Σ is true under the valuation 𝑡.
• If a formula 𝛽 is in Σ, then 𝛽 is true under 𝑡.

If Σ is the empty set ∅, then any valuation satisfies Σ. Why?

The definition of “𝑡 satisfies Σ” says

• If a formula 𝛽 is in Σ, then 𝛽 is true under 𝑡.

There is no formula in ∅, so the premise of the above statement is false,
which means the statement is vacuously true. Thus, any valuation satisfies
the empty set ∅.
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Subtleties about entailment

Consider a set of formulas Σ and the formula 𝛼. How many of the
following statements are true?

a. If 𝑝1 in Σ is false, then Σ ⊨ 𝛼 is false.
b. If Σ = {𝑥, (¬𝑥)}, then Σ ⊨ 𝛼 is true.
c. If ∅ ⊨ 𝛼 is true, then 𝛼 is a tautology (∅ is the empty set).
d. Two of (a), (b), and (c) are true.
e. All of (a), (b), and (c) are true.
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Proving or disproving entailment

Proving that Σ entails 𝛼, denoted Σ ⊨ 𝛼:

• Using a truth table: Consider all rows of the truth table in which all of
the formulas in Σ are true. Verify that 𝛼 is true in all of these rows.

• Direct proof: For every truth valuation under which all of the premises
are true, show that the conclusion is also true under this valuation.

• Proof by contradiction: Assume that the entailment does not hold,
which means that there is a truth valuation under which all of the
premises are true and the conclusion is false. Derive a contradiction.

Proving that Σ does not entail 𝛼, denoted Σ ⊭ 𝛼:

• Find one truth valuation 𝑡 under which all of the premises in Σ are
true and the conclusion 𝛼 is false.
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Proving entailment using a truth table

Let Σ = {(¬(𝑝 ∧ 𝑞)), (𝑝 → 𝑞)}, 𝑥 = (¬𝑝), and 𝑦 = (𝑝 ↔ 𝑞). Based on the
truth table, which of the following statements is true?

a. Σ ⊨ 𝑥 and Σ ⊨ 𝑦.
b. Σ ⊨ 𝑥 and Σ ⊭ 𝑦.
c. Σ ⊭ 𝑥 and Σ ⊨ 𝑦.
d. Σ ⊭ 𝑥 and Σ ⊭ 𝑦.

𝑝 𝑞 (¬(𝑝 ∧ 𝑞)) (𝑝 → 𝑞) 𝑥 = (¬𝑝) 𝑦 = (𝑝 ↔ 𝑞)
0 0 1 1 1 1
0 1 1 1 1 0
1 0 1 0 0 0
1 1 0 1 0 1

Entailment 10/55



Proving entailment

What is {(¬(𝑝 ∧ 𝑞)), (𝑝 ∧ 𝑞)} ⊨ (𝑝 ↔ 𝑞)?

a. True
b. False

𝑝 𝑞 (¬(𝑝 ∧ 𝑞)) (𝑝 ∧ 𝑞) (𝑝 ↔ 𝑞)
0 0 1 0 1
0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
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Equivalence and Entailment

Equivalence can be expressed using the notion of entailment.

Lemma. 𝛼 ≡ 𝛽 if and only if both {𝛼} ⊨ 𝛽 and {𝛽} ⊨ 𝛼.
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Proofs in Propositional Logic:
Natural Deduction
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Solution to the previous puzzle

A very special island is inhabited only by knights and knaves. Knights
always tell the truth, and knaves always lie.

You meet three inhabitants: Alice, Rex and Bob.

1. Alice says, “Rex is a knave.” This means Alice and Rex are different.
2. Rex says, “it’s false that Bob is a knave (or Bob is a knight).” This

means Rex and Bob are the same.
3. Bob claims, “I am a knight or Alice is a knight.” Bob is a knight, or

Bob and Alice are both knaves.

Based on 1 and 2, Alice and Bob are different, so they cannot both be
knaves (2nd option in 3). Thus, the only possibility left is Alice is a knave,
and Rex and Bob are knights.
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Labyrinth Puzzle
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Learning goals

Natural deduction in propositional logic

• Describe rules of inference for natural deduction.
• Prove a conclusion from given premises using natural deduction

inference rules.
• Describe strategies for applying each inference rule when proving a

conclusion formula using natural deduction.
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The Natural Deduction Proof System

We will consider a proof system called Natural Deduction.

• It closely follows how people (mathematicians, at least) normally make
formal arguments.

• It extends easily to more-powerful forms of logic.
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Why would you want to study natural deduction proofs?

• It is impressive to be able to write proofs with nested boxes and
mysterious symbols as justifications.

• Be able to prove or disprove that Superman exists (on Tuesday).
• Be able to prove or disprove that the onnagata are correct to insist

that males should play female characters in Japanese kabuki theatres.
• To realize that writing proofs and problem solving in general is both a

creative and a scientific endeavour.
• To develop problem solving strategies that can be used in many other

situations.

Natural Deduction Overview 18/55



A proof is syntactic

First, we think about proofs in a purely syntactic way.

A proof

• starts with a set of premises,
• transforms the premises based on a set of inference rules (by pattern

matching),
• and reaches a conclusion.

We write
Σ ⊢ND 𝜑 or simply Σ ⊢ 𝜑

if we can find such a proof that starts with a set of premises Σ and ends
with the conclusion 𝜑.
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Goal is to show semantic entailment

Next, we think about connecting proofs to semantic entailment.

We will answer these questions:

• (Soundness) Does every proof establish a semantic entailment?
If I can find a proof from Σ to 𝜑, can I conclude that Σ semantically
entails 𝜑?
Does Σ ⊢ 𝜑 imply Σ ⊨ 𝜑?

• (Completeness) For every semantic entailment, can I find a proof for
it?
If I know that Σ semantically entails 𝜑, can I find a proof from Σ to 𝜑?
Does Σ ⊨ 𝜑 imply Σ ⊢ 𝜑?
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Reflexivity / Premise

If you want to write down a previous formula in the proof again, you can
do it by reflexivity.

Name ⊢-notation inference notation
Reflexivity,
or Premise Σ, 𝛼 ⊢ 𝛼 𝛼

𝛼

The notation on the right: Given the formulas above the line, we can infer
the formula below the line.

The version in the center reminds us of the role of assumptions in Natural
Deduction. Other rules will make more use of it.
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An example using reflexivity

Here is a proof of {𝑝, 𝑞} ⊢ 𝑝.

1. 𝑝 Premise
2. 𝑞 Premise
3. 𝑝 Reflexivity: 1

Alternatively, we could simply write

1. 𝑝 Premise

and be done.
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For each symbol, the rules come in pairs.

• An “introduction rule” adds the symbol to the formula.
• An “elimination rule” removes the symbol from the formula.
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Rules for Conjunction

Name ⊢-notation inference notation
∧-introduction

(∧i)
If Σ ⊢ 𝛼 and Σ ⊢ 𝛽,

then Σ ⊢ (𝛼 ∧ 𝛽)
𝛼 𝛽

(𝛼 ∧ 𝛽)

Name ⊢-notation inference notation
∧-elimination

(∧e)
If Σ ⊢ (𝛼 ∧ 𝛽),

then Σ ⊢ 𝛼 and Σ ⊢ 𝛽 (𝛼 ∧ 𝛽)
𝛼

(𝛼 ∧ 𝛽)
𝛽
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Example: Conjunction Rules

Example. Show that {(𝑝 ∧ 𝑞)} ⊢ (𝑞 ∧ 𝑝).

1. (𝑝 ∧ 𝑞) Premise
2. 𝑞 ∧e: 1
3. 𝑝 ∧e: 1
4. (𝑞 ∧ 𝑝) ∧i: 2, 3
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Example: Conjunction Rules (2)

Example. Show that {(𝑝 ∧ 𝑞), 𝑟} ⊢ (𝑞 ∧ 𝑟).

1. (𝑝 ∧ 𝑞) Premise
2. 𝑟 Premise
3. 𝑞 ∧e: 1
4. (𝑞 ∧ 𝑟) ∧i: 3, 2
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Rules for Implication: →e

Name ⊢-notation inference notation
→-elimination

(→e)
(modus
ponens)

If Σ ⊢ (𝛼 → 𝛽) and Σ ⊢ 𝛼,
then Σ ⊢ 𝛽

(𝛼 → 𝛽) 𝛼
𝛽

In words:

If you assume 𝛼 is true and 𝛼 implies 𝛽, then you may
conclude 𝛽.
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Rules for Implication: →i

Name ⊢-notation inference notation

→-introduction
(→i)

If Σ, 𝛼 ⊢ 𝛽,
then Σ ⊢ (𝛼 → 𝛽)

𝛼....
𝛽

(𝛼 → 𝛽)

The “box” denotes a sub-proof. In the sub-proof, we starts by assuming
that 𝛼 is true (a premise of the sub-proof), and we conclude that 𝛽 is true.

Nothing inside the sub-proof may come out.

Outside of the sub-proof, we could only use the sub-proof as a whole.
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Example: Rule →i and sub-proofs

Example. Give a proof of {(𝑝 → 𝑞), (𝑞 → 𝑟)} ⊢ (𝑝 → 𝑟).

To start, we write down the premises at the beginning, and the conclusion
at the end.

1. (𝑝 → 𝑞) Premise
2. (𝑞 → 𝑟) Premise
3. 𝑝 Assumption
4. 𝑞 →e: 1, 3
5. 𝑟 →e: 2, 4
6. (𝑝 → 𝑟) ???

What next?

The goal “(𝑝 → 𝑟)” contains →.
Let’s try rule →i….

Inside the sub-proof, we can use
rule →e.

Done!
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Rules of Disjunction: ∨i and ∨e

Name ⊢-notation inference notation

∨-introduction
(∨i)

If Σ ⊢ 𝛼,
then Σ ⊢ 𝛼 ∨ 𝛽
and Σ ⊢ 𝛽 ∨ 𝛼

𝛼
𝛼 ∨ 𝛽

𝛼
𝛽 ∨ 𝛼

∨-elimination
(∨e)

If Σ, 𝛼1 ⊢ 𝛽
and Σ, 𝛼2 ⊢ 𝛽,

then
Σ, 𝛼1 ∨ 𝛼2 ⊢ 𝛽

𝛼1 ∨ 𝛼2

𝛼1....
𝛽

𝛼2....
𝛽

𝛽

∨e is also known as “proof by cases”.
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Example: Or-Introduction and -Elimination
Example: Show that {𝑝 ∨ 𝑞} ⊢ (𝑝 → 𝑞) ∨ (𝑞 → 𝑝).

1. 𝑝 ∨ 𝑞 Premise
2. 𝑝 Assumption
3. 𝑞 Assumption
4. 𝑝 Reflexivity: 2
5. 𝑞 → 𝑝 →i: 3–4
6. (𝑝 → 𝑞) ∨ (𝑞 → 𝑝) ∨i: 5
7. 𝑞 Assumption
8. 𝑝 Assumption
9. 𝑞 Reflexivity: 7

10. 𝑝 → 𝑞 →i: 8–9
11. (𝑝 → 𝑞) ∨ (𝑞 → 𝑝) ∨i: 10
12. (𝑝 → 𝑞) ∨ (𝑞 → 𝑝) ∨e: 1, 2–6, 7–11
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Negation

We shall treat negation by considering contradictions.

We shall use the notation ⟂ to represent any contradiction.
It may appear in proofs as if it were a formula.

The elimination rule for negation:

Name ⊢-notation inference notation
⟂-introduction, or
¬-elimination (¬e) Σ, 𝛼, (¬𝛼) ⊢ ⟂ 𝛼 (¬𝛼)

⟂

If we have both 𝛼 and (¬𝛼), then we have a contradiction.
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Negation Introduction (¬i)

If an assumption 𝛼 leads to a contradiction, then derive (¬𝛼).

Name ⊢-notation inference notation

¬-introduction
(¬i)

If Σ, 𝛼 ⊢ ⟂,
then Σ ⊢ (¬𝛼)

𝛼....
⟂

(¬𝛼)
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Example: Negation

Example. Show that {𝛼 → (¬𝛼)} ⊢ (¬𝛼).

1. 𝛼 → (¬𝛼) Premise
2. 𝛼 Assumption
3. (¬𝛼) →e: 1, 2
4. ⟂ ¬e: 2, 3
5. (¬𝛼) ¬i: 2–4
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The Last Two Basic Rules

Double-Negation Elimination:

Name ⊢-notation inference notation
¬¬-elimination

(¬¬e)
If Σ ⊢ (¬(¬𝛼)),

then Σ ⊢ 𝛼 (¬(¬𝛼))
𝛼

Contradiction Elimination:

Name ⊢-notation inference notation
⟂-elimination

(⟂e)
If Σ ⊢ ⟂,

then Σ ⊢ 𝛼
⟂
𝛼
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A Redundant Rule

The rule of ⟂-elimination is not actually needed.

Suppose a proof has 27. ⟂ ⟨some rule⟩
28. 𝛼 ⟂e: 27.

We can replace these by 27. ⟂ ⟨some rule⟩
28. (¬𝛼) Assumption
29. ⟂ Reflexivity: 27
30. (¬(¬𝛼)) ¬i: 28–29
31. 𝛼 ¬¬e: 30.

Thus any proof that uses ⟂e can be modified into a proof that does not.
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Example: “Modus tollens”

The principle of modus tollens: {𝑝 → 𝑞, (¬𝑞)} ⊢ (¬𝑝).

1. 𝑝 → 𝑞 Premise
2. (¬𝑞) Premise
3. 𝑝 Assumption
4. 𝑞 →e: 3, 1
5. ⟂ ¬e: 2, 4
6. (¬𝑝) ??

Modus tollens is sometimes taken as a “derived rule”:

𝛼 → 𝛽 (¬𝛽)
(¬𝛼) MT
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Derived Rules

Whenever we have a proof of the form Γ ⊢ 𝛼, we can consider it as a
derived rule: Γ

𝛼

If we use this in a proof, it can be replaced by the original proof of Γ ⊢ 𝛼.
The result is a proof using only the basic rules.

Using derived rules does not expand the things that can be proved. But
they can make it easier to find a proof.
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Strategies for natural deduction proofs

1. Work forward from the premises. Can you apply an elimination rule?
2. Work backwards from the conclusion. What introduction rule do you

need to use at the end?
3. Stare at the formula. Notice its structure. Use it to guide your proof.
4. If a direct proof doesn’t work, try a proof by contradiction.
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Further Examples of Natural Deduction

Example. Show that {𝑝 → 𝑞} ⊢ (𝑟 ∨ 𝑝) → (𝑟 ∨ 𝑞).

In the sub-proof, try ∨-elimination on the assumption
(step 2).

1. 𝑝 → 𝑞 Premise
2. 𝑟 ∨ 𝑝 Assumption
3. 𝑟 Assumption
4. 𝑟 ∨ 𝑞 ∨i: 3
5. 𝑝 Assumption
6. 𝑞 →e: 5, 1
7. 𝑟 ∨ 𝑞 ∨i: 6
8. 𝑟 ∨ 𝑞 ∨e: 2, 3–4, 5–7
9. (𝑟 ∨ 𝑝) → (𝑟 ∨ 𝑞) →i: 2–8
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Life’s Not Always So Easy…

Example. Show that ⊢ ((𝑝 → 𝑞) → 𝑝) → 𝑝.

1. (𝑝 → 𝑞) → 𝑝 Assumption
2. No elimination applies.
3.
4. ?????
5. 𝑝 No connective.
6. ((𝑝 → 𝑞) → 𝑝) → 𝑝 Try →i…

Time to try something ingenious….
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Some Common Derived Rules

Proof by contradiction (reductio ad absurdum):

if Σ, (¬𝛼) ⊢⟂, then Σ ⊢ 𝛼.

The “Law of Excluded Middle” (tertiam non datur): ⊢ 𝛼 ∨ (¬𝛼).

Double-Negation Introduction: if Σ ⊢ 𝛼 then Σ ⊢ (¬(¬𝛼)).

You can try to prove these yourself, as exercises.
(Hint: in the first two, the last step uses rule ¬¬e: (¬(¬𝛼)) ⊢ 𝛼.)

Or see pages 24–26 of Huth and Ryan.
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Soundness and Completeness
of Natural Deduction

for Propositional Logic
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Soundness and Completeness of Natural Deduction

We want to prove that Natural Deduction is both sound and complete.

Soundness of Natural Deduction means that the conclusion of a
proof is always a logical consequence of the premises. That is,

If Σ ⊢ND 𝛼, then Σ ⊨ 𝛼 .

Completeness of Natural Deduction means that all logical
consequences in propositional logic are provable in Natural
Deduction. That is,

If Σ ⊨ 𝛼, then Σ ⊢ND 𝛼 .
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Proof of Soundness

To prove soundness, we use induction on the length of the proof:

For all deductions Σ ⊢ 𝛼 which have a proof of length 𝑛 or less,
it is the case that Σ ⊨ 𝛼.

That property, however, is not quite good enough to carry out the
induction. We actually use the following property of a natural number 𝑛.

Suppose that a formula 𝛼 appears at line 𝑛 of a partial
deduction, which may have one or more open sub-proofs. Let Σ
be the set of premises used and Γ be the set of assumptions of
open sub-proofs. Then Σ ∪ Γ ⊨ 𝛼.
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Basis of the Induction

Base case. The shortest deductions have length 1, and thus are either

1. 𝛼 Premise.

or

1. 𝛼 Assumption.
2.

We have either 𝛼 ∈ Σ (in the first case), or 𝛼 ∈ Γ (in the second case).

Thus Σ ∪ Γ ⊨ 𝛼, as required.
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Proof of Soundness: Inductive Step

Inductive step. Hypothesis: the property holds for each 𝑛 < 𝑘; that is,

If some formula 𝛼 appears at line 𝑘 or earlier of some partial
deduction, with premises Σ and un-closed assumptions Γ, then
Σ ∪ Γ ⊨ 𝛼.

To prove: if 𝛼′ appears at line 𝑘 + 1, then Σ ∪ Γ′ ⊨ 𝛼′

(where Γ′ = Γ ∪ 𝛼′ when 𝛼′ is an assumption, and Γ′ = Γ otherwise).

The case that 𝛼′ is an assumption is trivial.

Otherwise, formula 𝛼′ must have a justification by some rule. We shall
consider each possible rule.
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Inductive Step, Case I

Case I: 𝛼′ was justified by ∧i.

We must have 𝛼′ = 𝛼1 ∧ 𝛼2, where each of 𝛼1 and 𝛼2 appear
earlier in the proof, at steps 𝑚1 and 𝑚2, respectively. Also, any
sub-proof open at step 𝑚1 or 𝑚2 is still open at step 𝑘 + 1.

Thus the induction hypothesis applies to both; that is,
Σ ∪ Γ ⊨ 𝛼1 and Σ ∪ Γ ⊨ 𝛼2.

By the definition of ⊨, this yields Σ ∪ Γ ⊨ 𝛼′, as required.

Natural Deduction Soundness and Completeness 48/55



Inductive Step, Case II

Case II: 𝛼′ was justified by →i.

Rule →i requires that 𝛼′ = 𝛼1 → 𝛼2 and there is a closed
sub-proof with assumption 𝛼1 and conclusion 𝛼2, ending by
step 𝑘. Also, any sub-proof open before the assumption of 𝛼1 is
still open at step 𝑘 + 1.

The induction hypothesis thus implies Σ ∪ (Γ ∪ {𝛼1}) ⊨ 𝛼2.

Hence Σ ∪ Γ ⊨ 𝛼1 → 𝛼2, as required.
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Inductive Step, Cases III ff.

Case III: 𝛼′ was justified by ¬e.

This requires that 𝛼′ be the pseudo-formula ⟂, and that the
proof contain formulas 𝛼 and (¬𝛼) for some 𝛼, each using at
most 𝑘 steps.
By the induction hypothesis, both Σ ⊨ 𝛼 and Σ ⊨ (¬𝛼).
Thus Σ is contradictory, and Σ ⊨ 𝛼′ for any 𝛼′.

Cases IV–XIII:

The other cases follow by similar reasoning.

This completes the inductive step, and the proof of soundness.

Natural Deduction Soundness and Completeness 50/55



Completeness of Natural Deduction

We now turn to completeness.

Recall that completeness means the following.

Let Σ be a set of formulas and 𝜑 be a formula.

If Σ ⊨ 𝜑, then Σ ⊢ 𝜑 .

That is, every consequence has a proof.

How can we prove this?
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Proof of Completeness: Getting started

We shall assume that the set Σ of hypotheses is finite.
The theorem is also true for infinite sets of hypotheses, but that
requires a completely different proof.

Suppose that Σ ⊨ 𝜑, where Σ = {𝜎1, 𝜎2, … , 𝜎𝑚}.
Thus the formula (𝜎1 ∧ 𝜎2 ∧ … ∧ 𝜎𝑚) → 𝜑 is a tautology.

Lemma. Every tautology is provable in Natural Deduction.

Once we prove the Lemma, the result follows. Given a proof of
(𝜎1 ∧ 𝜎2 ∧ … ∧ 𝜎𝑚) → 𝜑, one can use ∧i and →e to complete a proof of
Σ ⊢ 𝜑.
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Tautologies Have Proofs
For a tautology, every line of its truth table ends with T.
We can mimic the construction of a truth table using inferences in Natural
Deduction.

Claim. Let 𝜑 have 𝑘 variables 𝑝1, … , 𝑝𝑘. Let 𝑣 be a valuation,
and define ℓ1, ℓ2, … , ℓ𝑘 as

ℓ𝑖 =
⎧{
⎨{⎩

𝑝𝑖 if 𝑣(𝑝𝑖) = T
¬𝑝𝑖 if 𝑣(𝑝𝑖) = F.

If 𝜑𝑣 = T, then {ℓ1, … ℓ𝑘} ⊢ 𝜑, and
if 𝜑𝑣 = F, then {ℓ1, … ℓ𝑘} ⊢ (¬𝜑).

To prove the claim, use structural induction on formulas
(which is induction on the column number of the truth table).

Once the claim is proven, we can prove a tautology as follows….
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Outline of the Proof of a Tautology

1. 𝑝1 ∨ (¬𝑝1) L.E.M.
2. 𝑝2 ∨ (¬𝑝2) L.E.M.
⋮ ⋮
𝑘. 𝑝𝑘 ∨ (¬𝑝𝑘) L.E.M.

𝑘 + 1. 𝑝1 assumption
𝑝2 assumption
⋮

𝜑
(¬𝑝2) assumption
⋮

𝜑
𝑚. 𝜑 ∨e: 2, …

𝑚 + 1. (¬𝑝1) assumption
⋮
⋮

𝜑 ∨e: 𝑚 + 1, …
𝑛. 𝜑 ∨e: 1, 𝑚 − (𝑘 + 1),

𝑛 − (𝑚 + 1)

Once each variable is assumed true or
false, the previous claim provides a
proof.
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Proving the Claim

Hypothesis: the following hold for formulas 𝛼 and 𝛽:

If {ℓ1, … , ℓ𝑘} ⊨ 𝛼, then {ℓ1, … , ℓ𝑘} ⊢ 𝛼;
If {ℓ1, … , ℓ𝑘} ⊭ 𝛼, then {ℓ1, … , ℓ𝑘} ⊢ (¬𝛼);
If {ℓ1, … , ℓ𝑘} ⊨ 𝛽, then {ℓ1, … , ℓ𝑘} ⊢ 𝛽; and
If {ℓ1, … , ℓ𝑘} ⊭ 𝛽, then {ℓ1, … , ℓ𝑘} ⊢ (¬𝛽).

If {ℓ1, … , ℓ𝑘} ⊨ (𝛼 ∧ 𝛽), put the two proofs of 𝛼 and 𝛽 together, and then
infer (𝛼 ∧ 𝛽), by ∧i.

If {ℓ1, … , ℓ𝑘} ⊭ (𝛼 → 𝛽) (i.e., {ℓ1, … , ℓ𝑘} ⊨ 𝛼 and {ℓ1, … , ℓ𝑘} ⊭ 𝛽),

• Prove 𝛼 and (¬𝛽).
• Assume (𝛼 → 𝛽); from it, conclude 𝛽 (→e) and then ⟂ (¬e).
• From the sub-proof, conclude (¬(𝛼 → 𝛽)), by ¬i.

The other cases are similar.
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