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The roadmap of propositional logic

Semantics 3/56



FCC spectrum auction — an application of propositional
logic

To repurpose radio spectrums

2 auctions:

• one to buy back spectrums from broadcasters
• the other to sell spectrums to telecoms

A computational problem in the buy back auction: If I pay these
broadcasters to go off air, could I repackage the spectrums and sell to
telecoms? Could I lower your price and still manage to get useful
spectrums to sell to telecoms?

The problem comes down to, how many satisfiability problems can I solve
in a very short amount of time? (determine that a formula is satisfiable or
determine that it is unsatisfiable.)

Talk by Kevin Leyton-Brown
https://www.youtube.com/watch?v=u1-jJOivP70
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Learning goals

By the end of this lecture, you should be able to

• Evaluate the truth value of a formula
• Define a (truth) valuation.
• Determine the truth value of a formula by using truth tables.
• Determine the truth value of a formula by using valuation trees.

• Determine and prove whether a formula has a particular property
• Define tautology, contradiction, and satisfiable formula.
• Compare and contrast the three properties (tautology, contradiction,

and satisfiable formula).
• Prove whether a formula is a tautology, a contradiction, or satisfiable,

using a truth table and/or a valuation tree.
• Describe strategies to prove whether a formula is a tautology, a

contradiction or a satisfiable formula.
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The meaning of well-formed formulas

To interpret a formula, we have to give meanings to the propositional
variables and the connectives.

A propositional variable has no intrinsic meaning; it gets a meaning via a
valuation.

A (truth) valuation is a function 𝑡 ∶ 𝒫 ↦ {F, T} from the set of all
proposition variables 𝒫 to {F, T}. It assigns true/false to every
propositional variable.

Two notations: 𝑡(𝑝) and 𝑝𝑡 both denote the truth value of 𝑝 under the
truth valuation 𝑡.
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Truth tables for connectives

The unary connective ¬:

𝛼 (¬𝛼)
T F
F T

The binary connectives ∧, ∨, →, and ↔:

𝛼 𝛽 (𝛼 ∧ 𝛽) (𝛼 ∨ 𝛽) (𝛼 → 𝛽) (𝛼 ↔ 𝛽)
F F F F T T
F T F T T F
T F F T F F
T T T T T T
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Truth value of a formula
Fix a truth valuation 𝑡. Every formula 𝛼 has a value under 𝑡, denoted 𝛼𝑡,
determined as follows.

1. 𝑝𝑡 = 𝑡(𝑝).

2. (¬𝛼)𝑡 = { T if 𝛼𝑡 = F
F if 𝛼𝑡 = T

3. (𝛼 ∧ 𝛽)𝑡 = { T if 𝛼𝑡 = 𝛽𝑡 = T
F otherwise

4. (𝛼 ∨ 𝛽)𝑡 = { T if 𝛼𝑡 = T or 𝛽𝑡 = T
F otherwise

5. (𝛼 → 𝛽)𝑡 = { T if 𝛼𝑡 = F or 𝛽𝑡 = T
F otherwise

6. (𝛼 ↔ 𝛽)𝑡 = { T if 𝛼𝑡 = 𝛽𝑡

F otherwise
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Evaluating a formula using a truth table

Example. The truth table of ((𝑝 ∨ 𝑞) → (𝑞 ∧ 𝑟)).

𝑝 𝑞 𝑟 (𝑝 ∨ 𝑞) (𝑞 ∧ 𝑟) ((𝑝 ∨ 𝑞) → (𝑞 ∧ 𝑟))
F F F F F T
F F T F F T
F T F T F F
F T T T T T
T F F T F F
T F T T F F
T T F T F F
T T T T T T
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Evaluating a formula using a truth table

Build the truth table of ((𝑝 → (¬𝑞)) → (𝑞 ∨ (¬𝑝))).
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Understanding the disjunction and the biconditional

𝛼 𝛽 (𝛼 ∨ 𝛽) Exclusive OR Biconditional
F F F F T
F T T T F
T F T T F
T T T F T

• What is the difference between an inclusive OR (the disjunction) and
an exclusive OR?

• What is the relationship between the exclusive OR and the
biconditional?
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Understanding the conditional →

Assume that proposition 𝑝 defined below is true.

𝑝: If Alice is rich, she will pay your tuition.

If Alice is rich, will she pay your tuition?

a. Yes
b. No
c. Maybe

If Alice is not rich, will she pay your tuition?

a. Yes
b. No
c. Maybe
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Understanding the conditional →

Alice is rich Alice will pay your tuition. If Alice is rich, she will pay your tuition.
F F T
F T T
T F F
T T T

• Suppose that the implication is a promise that I made. How can you
show that I broke my promise?

• If the premise is false, is the statement true or false? (Will the
statement ever be contradicted?)

• When the conclusion is true, is the statement true or false?
• When the premise is true, how does the truth value of the statement

compare to the truth value of the conclusion?
• Convert 𝑝 → 𝑞 into a logically equivalent formula which only uses the

connectives ∧, ∨ and ¬. Does this alternative formula make sense?
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Another example of structural induction

Theorem: Fix a truth valuation 𝑡. Every formula 𝛼 has a value 𝛼𝑡 in
{F, T}.

Proof: The property for 𝑅(𝛼) is “𝛼 has a value 𝛼𝑡 in {F, T}”.

1. If 𝛼 is a propositional variable, then 𝑡 assigns it a value of T or F (by
the definition of a truth valuation).

2. If 𝛼 has a value in {F, T}, then (¬𝛼) also does, as shown by the truth
table of (¬𝛼).

3. If 𝛼 and 𝛽 each has a value in {F, T}, then (𝛼 ⋆ 𝛽) also does for every
binary connective ⋆, as shown by the corresponding truth tables.

By the principle of structural induction, every formula has a value.

By the unique readability of formulas, we have proved that a formula has
only one truth value under any truth valuation 𝑡. QED
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Tautology, Contradiction, Satisfiable

A formula 𝛼 is a tautology if and only if
for every truth valuation 𝑡, 𝛼𝑡 = T.
A formula 𝛼 is a contradiction if and only if
for every truth valuation 𝑡, 𝛼𝑡 = F.
A formula 𝛼 is satisfiable if and only if
there exists a truth valuation 𝑡 such that 𝛼𝑡 = T.
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Relationships among the properties

Divide the set of all formulas into 3 mutually exclusive and exhaustive sets.
We know two things about these sets:

• A formula is in set 1 if and only if the formula is true in every row of
the formula’s truth table.

• A formula is in set 3 if and only if it is a contradiction.

Which of the following statements is true?

a. In set 3, every formula is false in every row of the formula’s truth table.
b. In set 2, every formula is true in at least one row and false in at least

one row of the formula’s truth table.
c. Sets 2 and 3 contain exactly the set of satisfiable formulas.
d. Two of (a), (b), and (c) are true.
e. All of (a), (b), and (c) are true.
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Examples

1. ((((𝑝 ∧ 𝑞) → (¬𝑟)) ∧ (𝑝 → 𝑞)) → (𝑝 → (¬𝑟)))
2. ((((𝑝 ∧ 𝑞) → 𝑟) ∧ (𝑝 → 𝑞)) → (𝑝 → 𝑟))
3. (𝑝 ∨ 𝑞) ↔ ((𝑝 ∧ (¬𝑞) ∨ ((¬𝑝) ∧ 𝑞))
4. (𝑝 ∧ (¬𝑝))
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How to determine the properties of a formula

• Truth table
• Valuation tree
• Reasoning
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Valuation Tree

Rather than fill out an entire truth table, we can analyze what happens if
we plug in a truth value for one variable.

¬T F
¬F T

𝑝 ∧ T 𝑝
𝑝 ∧ F F
𝑝 ∧ 𝑝 𝑝

𝑝 ∨ T T
𝑝 ∨ F 𝑝
𝑝 ∨ 𝑝 𝑝

𝑝 → T T
𝑝 → F ¬𝑝
T → 𝑝 𝑝
F → 𝑝 T
𝑝 → 𝑝 T

We can evaluate a formula by using these rules to construct a valuation
tree.
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Example of a valuation tree
Example. Show that (((𝑝 ∧ 𝑞) → (¬𝑟)) ∧ (𝑝 → 𝑞)) → (𝑝 → (¬𝑟))) is a
tautology by using a valuation tree.

Suppose 𝑡(𝑝) = T. We put T in for 𝑝:

(((T ∧ 𝑞) → (¬𝑟)) ∧ (T → 𝑞)) → (T → (¬𝑟)) .

Based on the truth tables for the connectives, the formula becomes
(((𝑞 → (¬𝑟)) ∧ 𝑞) → (¬𝑟)).

If 𝑡(𝑞) = T, this yields ((¬𝑟) → (¬𝑟)) and then T. (Check!).
If 𝑡(𝑞) = F, it yields (F → (¬𝑟)) and then T. (Check!).

Suppose 𝑡(𝑝) = F. We get

(((F ∧ 𝑞) → (¬𝑟)) ∧ (F → 𝑞)) → (F → (¬𝑟)) ,

Simplification yields ((F → (¬𝑟)) ∧ T) → T and eventually T.

Thus every valuation makes the formula true, as required.
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Reasoning about the properties

I found a valuation for which the formula is true. Does the formula have
each property below?

• Tautology YES NO MAYBE
• Contradiction YES NO MAYBE
• Satisfiable YES NO MAYBE

I found a valuation for which the formula is false. Does the formula have
each property below?

• Tautology YES NO MAYBE
• Contradiction YES NO MAYBE
• Satisfiable YES NO MAYBE
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Examples

1. ((((𝑝 ∧ 𝑞) → (¬𝑟)) ∧ (𝑝 → 𝑞)) → (𝑝 → (¬𝑟)))
2. ((((𝑝 ∧ 𝑞) → 𝑟) ∧ (𝑝 → 𝑞)) → (𝑝 → 𝑟))
3. (𝑝 ∨ 𝑞) ↔ ((𝑝 ∧ (¬𝑞)) ∨ ((¬𝑝) ∧ 𝑞))
4. (𝑝 ∧ (¬𝑝))
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A logic puzzle

Each of the four cards has a number on one side and a color on the other
side. How many cards do you have to turn over to test whether this
statement is true: “if a card has an even number on one side, then its
opposite side is red”?

Your answer is (a) 0 (b) 1 (c) 2 (d) 3 (e) 4.
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Announcements
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Clickers

• What are they for? Active learning, engagement
• Why do you ask us to answer twice? Peer instruction
• If you choose to be here, please participate!
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Outline for today

• How can we prove that two formulas have the same meaning?
(Logical equivalence)

• Which set of connectives is sufficient to express all possible formulas?
(Adequate set of connectives)
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Learning goals
Logical equivalence of formulas:

• Prove that the logical equivalence of formulas using truth tables
and/or logical identities.

• Describe strategies to prove logical equivalence using logical identities.
• Translate a condition in a block of code into a propositional logic

formula.
• Simplify code using truth tables and logical identities.
• Determine whether a piece of code is live or dead using truth tables

and logical identities.

Adequate set of connectives:

• Prove that a set of connectives is an adequate set for propositional
logic by using truth tables and logical identities.

• Prove that a set of connectives is not an adequate set for
propositional logic.
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Definition of logical equivalence

Two formulas 𝛼 and 𝛽 are logically equivalent if and only if they have the
same value under any valuation.

• 𝛼𝑡 = 𝛽𝑡, for every valuation 𝑡.
• 𝛼 and 𝛽 must have the same final column in their truth tables.
• (𝛼 ↔ 𝛽) is a tautology.
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Why do we care about logical equivalence?

• Will I lose marks if I provide a solution that is syntactically different
but logically equivalent to the provided solution?

• Do these two circuits behave the same way?
• Do these two pieces of code fragments behave the same way?
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You already know one way of proving logical equivalent. What is it?

Theorem: (((¬𝑝) ∧ 𝑞) ∨ 𝑝) ≡ (𝑝 ∨ 𝑞).
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Logical Identities

Commutativity
(𝛼 ∧ 𝛽) ≡ (𝛽 ∧ 𝛼)
(𝛼 ∨ 𝛽) ≡ (𝛽 ∨ 𝛼)

Associativity
(𝛼 ∧ (𝛽 ∧ 𝛾)) ≡ ((𝛼 ∧ 𝛽) ∧ 𝛾)
(𝛼 ∨ (𝛽 ∨ 𝛾)) ≡ ((𝛼 ∨ 𝛽) ∨ 𝛾)

Distributivity
(𝛼 ∨ (𝛽 ∧ 𝛾)) ≡ ((𝛼 ∨ 𝛽) ∧ (𝛼 ∨ 𝛾))
(𝛼 ∧ (𝛽 ∨ 𝛾)) ≡ ((𝛼 ∧ 𝛽) ∨ (𝛼 ∧ 𝛾))

Idempotence
(𝛼 ∨ 𝛼) ≡ 𝛼
(𝛼 ∧ 𝛼) ≡ 𝛼

Double Negation
(¬(¬𝛼)) ≡ 𝛼

De Morgan’s Laws
(¬(𝛼 ∧ 𝛽)) ≡ ((¬𝛼) ∨ (¬𝛽))
(¬(𝛼 ∨ 𝛽)) ≡ ((¬𝛼) ∧ (¬𝛽))
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Logical Identities, cont’d

Simplification I (Absorbtion)
(𝛼 ∧ T) ≡ 𝛼
(𝛼 ∨ T) ≡ T
(𝛼 ∧ F) ≡ F
(𝛼 ∨ F) ≡ 𝛼

Simplification II
(𝛼 ∨ (𝛼 ∧ 𝛽)) ≡ 𝛼
(𝛼 ∧ (𝛼 ∨ 𝛽)) ≡ 𝛼

Implication
(𝛼 → 𝛽) ≡ ((¬𝛼) ∨ 𝛽)

Contrapositive
(𝛼 → 𝛽) ≡ ((¬𝛽) → (¬𝛼))

Equivalence
(𝛼 ↔ 𝛽) ≡ ((𝛼 → 𝛽) ∧ (𝛽 → 𝛼))

Excluded Middle
(𝛼 ∨ (¬𝛼)) ≡ T

Contradiction
(𝛼 ∧ (¬𝛼)) ≡ F
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A logical equivalence proof

Theorem: (((¬𝑝) ∧ 𝑞) ∨ 𝑝) ≡ (𝑝 ∨ 𝑞).
Proof:

(((¬𝑝) ∧ 𝑞) ∨ 𝑝)
≡ (((¬𝑝) ∨ 𝑝) ∧ (𝑞 ∨ 𝑝)) Distributivity
... to be filled in ...
≡ (𝑞 ∨ 𝑝) Simplification I
≡ (𝑝 ∨ 𝑞) Commutativity

QED
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A logical equivalence proof
What is missing from the proof?

a. (𝑞 ∨ 𝑝)
b. (F ∧ (𝑞 ∨ 𝑝))
c. (𝑞 ∧ (𝑞 ∨ 𝑝))
d. None of these, but I know what it is.
e. None of these, and there’s not enough information to tell.

Theorem: (((¬𝑝) ∧ 𝑞) ∨ 𝑝) ≡ (𝑝 ∨ 𝑞).
Proof:

(((¬𝑝) ∧ 𝑞) ∨ 𝑝)
≡ (((¬𝑝) ∨ 𝑝) ∧ (𝑞 ∨ 𝑝)) Distributivity
... to be filled in ...
≡ (𝑞 ∨ 𝑝) Simplification I
≡ (𝑝 ∨ 𝑞) Commutativity

QED
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A practice problem
”If it is sunny, I will play golf, provided that I am relaxed.”

𝑠: it is sunny. 𝑔: I will play golf. 𝑟: I am relaxed.

A few translations:

1. (𝑠 → (𝑟 → 𝑔))
2. (𝑟 → (𝑠 → 𝑔))
3. ((𝑠 ∧ 𝑟) → 𝑔)

Theorem: (𝑟 → (𝑠 → 𝑔)) ≡ ((𝑠 ∧ 𝑟) → 𝑔).
Proof:

... to be filled in ...

QED
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How do you prove non-equivalence?
”If it snows then I won’t go to class, but I will do my assignment.”

𝑠: it snows. 𝑐: I will go to class. 𝑎: I will do my assignment.

2 possible translations:

1. ((𝑠 → (¬𝑐)) ∧ 𝑎)
2. (𝑠 → ((¬𝑐) ∧ 𝑎))

Theorem: ((𝑠 → (¬𝑐)) ∧ 𝑎) and (𝑠 → ((¬𝑐) ∧ 𝑎)) are not logically
equivalent.

Which valuation 𝑡 can we use to prove this theorem?

a. 𝑠𝑡 = F, (¬𝑐)𝑡 = F, 𝑎𝑡 = F
b. 𝑠𝑡 = F, (¬𝑐)𝑡 = T, 𝑎𝑡 = F
c. 𝑠𝑡 = T, (¬𝑐)𝑡 = T, 𝑎𝑡 = T
d. Two of these.
e. All of these.
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Collected Wisdom

• Try getting rid of → and ↔.
• Try moving negations inward. ¬(𝑝 ∨ 𝑞) ≡ (¬𝑝) ∧ (¬𝑞).
• Work from the more complex side first, BUT
• Switch to different strategies/sides when you get stuck.
• In the end, write the proof in clean “one-side-to-the-other” form and

double-check steps.
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A piece of pseudo code

if ( (input > 0) or (not output) ) {
if ( not (output and (queuelength < 100) ) ) {

𝑃1
} else if ( output and (not (queuelength < 100)) ) {

𝑃2
} else { 𝑃3 }

} else { 𝑃4 }

When does each piece of code get executed?

Let 𝑖: input > 0,
𝑢: output,
𝑞: queuelength < 100.
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Simplifying the piece of pseudo code

if ( i or (not u) ) {
if ( not (u and q) ) {

𝑃1
} else if ( u and (not q) ) {

𝑃2
} else { 𝑃3 }

} else { 𝑃4 }

Which one of the following is incorrect?

a. 𝑃1 is executed when (𝑖 ∨ (¬𝑢)) ∧ (¬(𝑢 ∧ 𝑞)) is true.
b. 𝑃2 is executed when (𝑖 ∨ (¬𝑢)) ∧ (𝑢 ∧ (¬𝑞)) is true.
c. 𝑃3 is executed when ((𝑖 ∨ (¬𝑢)) ∧ (𝑢 ∧ 𝑞)) ∧ ((¬𝑢) ∨ 𝑞) is true.
d. 𝑃4 is executed when 𝑖 is false and 𝑢 is true.
e. All of them are correct.
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A Code Example, cont’d

𝑖 𝑢 𝑞 (𝑖 ∨ (¬𝑢)) (¬(𝑢 ∧ 𝑞)) (𝑢 ∧ (¬𝑞))
T T T T F F 𝑃3

T T F T T 𝑃1

T F T T T 𝑃1

T F F T T 𝑃1

F T T F 𝑃4

F T F F 𝑃4

F F T T T 𝑃1

F F F T T 𝑃1
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Finding Dead Code

Prove that 𝑃2 is dead code. That is, the conditions leading to 𝑃2 is
logically equivalent to F.

(((𝑖 ∨ (¬𝑢)) ∧ (¬(¬(𝑢 ∧ 𝑞)))) ∧ (𝑢 ∧ (¬𝑞)))
... to be filled in ...
≡ F

Simplifying the above condition to F will necessarily use the following
logical identities.

a. Simplification I
b. Excluded Middle
c. Contradiction
d. Two of the above
e. All of the above
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Finding Live Code

Prove that 𝑃3 is live code. That is, the conditions leading to 𝑃3 is
satisfiable.

Theorem:
((𝑖 ∨ (¬𝑢)) ∧ ((¬(¬(𝑢 ∧ 𝑞))) ∧ (¬(𝑢 ∧ (¬𝑞))))) ≡ ((𝑖 ∧ 𝑢) ∧ 𝑞)
Proof:

((𝑖 ∨ (¬𝑢)) ∧ ((¬(¬(𝑢 ∧ 𝑞))) ∧ (¬(𝑢 ∧ (¬𝑞)))))
... to be filled in ...
≡ ((𝑖 ∧ 𝑢) ∧ 𝑞)

QED
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Two pieces of code: Are they equivalent?

Fragment 1:

if ( i or (not u) ) {
if ( not (u and q) ) {

𝑃1
}
else if ( u and (not q) ) {

𝑃2
}
else {

𝑃3
}

}
else {

𝑃4
}

Fragment 2:

if ( (i and u) and q ) {
𝑃3

}
else if ( (not i) and u ) {

𝑃4
}
else {

𝑃1
}
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Simplifying Code

To prove that the two fragments are equivalent, show that each block of
code 𝑃1, 𝑃2, 𝑃3, and 𝑃4 is executed under equivalent conditions.

Block Fragment 1 Fragment 2
𝑃1 (𝑖 ∨ (¬𝑢)) ∧ (¬(𝑢 ∧ 𝑞)) (¬(𝑖 ∧ 𝑢 ∧ 𝑞)) ∧ (¬((¬𝑖) ∧ 𝑢))

𝑃2 (𝑖 ∨ (¬𝑢)) ∧ (¬(¬(𝑢 ∧ 𝑞))) F
∧ (𝑢 ∧ (¬𝑞))

𝑃3 (𝑖 ∨ (¬𝑢)) ∧ (¬(¬(𝑢 ∧ 𝑞))) (𝑖 ∧ 𝑢 ∧ 𝑞)
∧ (¬(𝑢 ∧ (¬𝑞)))

𝑃4 (¬(𝑖 ∨ (¬𝑢))) (¬(𝑖 ∧ 𝑢 ∧ 𝑞)) ∧ ((¬𝑖) ∧ 𝑢)
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The solution to the last logic puzzle
Each of the four cards has a number on one side and a color on the other
side. How many cards do you have to turn over to test whether this
statement is true: “if a card has an even number on one side, then its
opposite side is red”?

Solution: You need to turn over 2 cards. If a card has an even number on
one side, then you need to check that its opposite side is red. Also, if a
card is NOT red, you need to check that its opposite side has an ODD
number (this is the contrapositive of the given statement). Thus, you need
to turn over the second card from the left and the first card from the right.
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Another logic puzzle

A very special island is inhabited only by knights and knaves. Knights
always tell the truth, and knaves always lie.

You meet three inhabitants: Alice, Rex and Bob.

Alice says, “Rex is a knave.”

Rex says, “it’s false that Bob is a knave.”

Bob claims, “I am a knight or Alice is a knight.”

Can you determine who is a knight and who is a knave?
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Adequate sets of connectives
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Learning goals

• Prove that a set of connectives is an adequate set for propositional
logic by using truth tables and logical identities.

• Prove that a set of connectives is not an adequate set for
propositional logic.
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Some questions first

• We started propositional logic by learning these connectives ¬, ∧, ∨,
→ and ↔.

• Why did we learn these connectives?
• Using these connectives, can we express every propositional logic

formula that we ever want to write?
• Are there any connectives in this set that are not necessary?
• Are there other connectives that we could define and use? Is there

another set of connectives that we should have studied instead?
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Some answers

Is every connective we learned necessary?

Nope!

Recall that 𝑥 → 𝑦 ≡ (¬𝑥) ∨ 𝑦. We don’t need → at all. (We say that →
is definable in terms of ¬ and ∨.)

Are there other connectives that we could define and use?

Yep! Let’s take a look.
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Adequate Sets of Connectives

Which set of connectives is sufficient to express every possible
propositional formula?

This is called an adequate set of connectives. Any other connective
connective is definable in terms of the ones in such a set.

Theorem 1. {∧, ∨, ¬} is an adequate set of connectives.

Theorem 2. Each of the sets {∧, ¬}, {∨, ¬}, and {→, ¬} is adequate.

Theorem 3. The set {∧, ∨} is not an adequate set of connectives.
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An adequate set to start with

Theorem 1. {∧, ∨, ¬} is an adequate set of connectives.

Hint: use truth tables.

How many people know a way to prove this theorem?
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A reduction problem

Theorem 1. {∧, ∨, ¬} is an adequate set of connectives.

Now we can assume that theorem 1 holds.

Theorem 2. Each of the sets {∧, ¬}, {∨, ¬}, and {→, ¬} is adequate.

By Theorem 1, the set {∧, ∨, ¬} is adequate.

To prove that {∧, ¬} is adequate, we need to show that ∨ is definable in
terms of ∧ and ¬.

To prove that {∨, ¬} is adequate, we need to show that ∧ is definable in
terms of ∨ and ¬.

To prove that {→, ¬} is adequate, we need to show that each of ∨ and ∧
is definable in terms of → and ¬.
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A non-adequate set

Theorem 3. The set {∧, ∨} is not an adequate set of connectives.

Consider any formula which uses only ∧ and ∨ as connectives. Assume
that every variable in the formula is true. What is the truth value of the
formula?

a. Always true
b. Always false
c. Sometimes true and sometimes false
d. Not enough information to tell
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A non-adequate set

Theorem 3. The set {∧, ∨} is not an adequate set of connectives.

Lemma: For any formula which uses only ∧ and ∨ as connectives, if every
variable in the formula is true, then the formula is true.

This lemma means that it is impossible to negate a formula using only ∧
and ∨.

We can prove the lemma using structural induction.
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