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Undecidability 
There are problems that cannot be solved by computer 
programs (i.e. algorithms) even 
assuming unlimited time and space.


Proved by Alan Turing in 1936


What is a computer program/algorithm?

• At the time, there were no electronic computers.  A 

computer referred to a person who computes.

• Turing’s idea of a “computer program” was a list of 

instructions that a person could follow.

• For us, an algorithm could refer to any of the following:


• Racket, C, and C++ programs

• Turing machines 

• High-level pseudo-code


What does it mean for an algorithm to solve a problem?	 

• The algorithm must produce the correct output for 

______ input.
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We focus on decision problems.

A decision problem ________________________


A decision problem is

• Decidable iff ______________________________________.

• Undecidable iff ____________________________________

                            ___________________________________.


Examples of decision problems:


1. Given a propositional formula, is it satisfiable?


2. Given a predicate formula, is it valid?


3. Given a positive integer, is it prime?


4. Given a program and a Hoare triple, does the program 
satisfy the Hoare triple under partial correctness?


5. Given a program and a Hoare triple, does the program 
satisfy the Hoare triple under total correctness?


6. Given two programs, do the two programs produce the 
same output for every input?


7. Given a program and an input, does the program 
terminate on the input?
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The Halting Problem:

Given a program P and an input I, will P halt on I?


• “Halts” means “terminates” or “does not get stuck”.

• One of the first known undecidable problems


The Halting Theorem: There does not exist an algorithm H 
which solves the halting problem for every program P and 
input I.


Proof by contradiction:


Assume that there exists an algorithm H(P,I), which solves 
the halting problem for every program P and input I.


We need to derive a contradiction, which shows that H 
does not exist.


Our approach:

	 We will construct an algorithm X(P), which takes a 
program P as input.  We will show that H always gives the 
wrong answer when predicting whether the program X 
halts on the input X.  That is, 

• If H(X,X) returns yes, then X does not halt on X.

• If H(X,X) returns no, then X halts on X.
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The algorithm X(P) does the following three things:


(1)

(2)


(3) 


Let’s compare the result of X(X) and the output of H(X,X).


Therefore, our assumption must be wrong, and H does 
not exist.


	 	 	 	 	 	 	 	 	 	 	       QED
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Proving Undecidability via Reduction 

Now that we know the halting problem is undecidable.  
How do we prove that another problem is undecidable?  

• We could prove it from scratch, or…

• We could prove that this problem is as hard as the 

halting problem; hence it is undecidable.


Problem A is reducible to problem B.

• An algorithm for solving B could be used as a 

subroutine for solving A.

• If there is an algorithm to solve B, then there is an 

algorithm to solve A.

• If A is undecidable, then B is undecidable.


A picture to illustrate this:


�5



CS245 Undecidability Alice Gao Nov 28

Halting-no-input Problem: Given a program P (that reads 
no input), does P halt?


Theorem: The Halting-no-input problem is undecidable.


Proof by contradiction:


Suppose that we have an algorithm A to solve the 
Halting-no-input Problem.  We can use it to solve the 
Halting problem.


	 	 	 	 	 	 	 	 	 	 	 QED

A proof by picture:
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Total Correctness Problem: Given a Hoare triple {P} C {Q}, 
does C satisfy the triple under total correctness?


Theorem: The total correctness problem is undecidable.


Proof by contradiction:


Suppose that we have an algorithm A to solve the Total 
Correctness Problem.  We can use it to solve the Halting-
no-input Problem.


	 	 	 	 	 	 	 	 	 	 	 QED

A proof by picture:
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Partial Correctness:  Given a Hoare triple {P} C {Q}, does 
C satisfy the triple under partial correctness?


Theorem: The partial correctness problem is undecidable.


Proof by contradiction:


Suppose that we have an algorithm A to solve the Partial 
Correctness Problem.  We can use it to solve the Halting-
no-input Problem.


	 	 	 	 	 	 	 	 	 	 	 QED

A proof by picture:
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