Lemma 1: Every well-formed formula starts with a propositional variable or an opening bracket.

Lemma 2: Every well-formed formula has an equal number of opening and closing brackets.

Lemma 3: Every proper prefix of a well-formed formula has more opening brackets than closing brackets.

Theorem: There is a unique way to construct every well-formed formula.

Proof by structural induction:

Let x be a well-formed formula. We want to prove that there is a unique way to construct x as a well-formed formula.

Base case: x is a propositional variable.

Can we construct x as (\neg a) for a well-formed formula a by applying negation as the last step?

If we construct a formula by applying negation as the last step, then it has to be of the form $(\neg a)$ and has to contain at least 3 symbols. However, the formula x only has 1 symbol. Therefore, we cannot construct x by applying negation as the last step.

Can we construct x as ($\mathrm{a} * \mathrm{~b}$) for well-formed formulas a and b by applying a binary connective * as the last step?

If we construct a formula by applying negation as the last step, then it has to be of the form $(\neg a)$ and has to contain at least 3 symbols. However, the formula x only has 1 symbol. Therefore, we cannot construct x by applying negation as the last step.

Induction step:

Case 1: x is $(\neg a)$ for a well-formed formula a.

Induction hypothesis: assume that there is a unique way to construct a. We need to prove that there is a unique way to construct $(\neg a)$.

We already know one way to construct (\neg a): construct a, and apply negation as the last step. We need to show that there is no other way to construct $(\neg a)$.

Can we construct ($\neg \mathrm{a}$) as a propositional variable?

If we construct a formula as a propositional variable, then it has to have 1 symbol. However, the formula (\neg a) has at least 3 symbols. So we cannot construct $(\neg a)$ as a propositional variable.

Can we construct ($\neg \mathrm{a}$) as ($\mathrm{c} * \mathrm{~d}$) for well-formed formulas c and d by applying a binary connective * as the last step?

Suppose that we can construct $(\neg a)$ as ($\left.c^{*} d\right)$ for well-formed formulas c and d by applying a binary connective * as the last step. Then the connective * has to be in the formula a. Let $a=m * n$. Then $c=\neg m$ and $d=n$. We will argue that c is not a well-formed formula.
m is a proper prefix of the well-formed formula a. By Lemma 3, m has more opening than closing brackets. Thus, c also has more opening than closing brackets. By Lemma 2, c is not a well-formed formula.

Therefore, we cannot construct (\neg a) by applying a binary connective as the last step.

Case 2: x is ($a^{*} b$) for well-formed formulas a and b where * is one of \wedge, v, \rightarrow, and \leftrightarrow.

Induction hypothesis: assume that there is a unique way to construct a and b respectively. We need to prove that there is a unique way to construct (a*b). We already know one way to construct ($a^{*} b$): construct a and b separately, and apply * as the last step. We need to show that there is no other way to construct (a*b).

Can (a*b) be constructed as a propositional variable?

If we construct a formula as a propositional variable, then it has to have 1 symbol. However, the formula ($a * b$) has at least 3 symbols. So we cannot construct ($a * b$) as a propositional variable.

Can (a*b) be constructed as ($\neg \mathrm{c}$) for well-formed formula c by applying negation as the last step?

Suppose that we can construct (a^{*} b) by applying negation as the last step. Then the binary connective * has to be in c. Let $c=m * n$. Then $a=\neg m$ and b $=n$. We will argue that a is not a well-formed formula.
m is a proper prefix of the well-formed formula c. By Lemma $3, m$ has more opening than closing brackets. Thus, a also has more opening than closing brackets. By Lemma 2, a is not a well-formed formula.

Can (a*b) be constructed as (c@d) for well-formed formulas cand d by applying a binary connective @ that is different from * as the last step?

Suppose that we can construct (a*b) by applying a different binary connective @ as the last step. Then the binary connective @ has to be either in a or in b.

If the binary connective @ is in a, then c is a proper prefix of a. By Lemma 3, c has more opening than closing brackets. Thus, c is not a well-formed formula.

If the binary connective @ is in b, then let $b=m @ n$. Then $c=a * m$ and $d=n$. Let $\mathrm{op}(\mathrm{x})$ and $\mathrm{cl}(\mathrm{x})$ denote the number of opening and closing brackets in a formula x.
a is a well-formed formula, so op(a) = cl(a) by Lemma 2. m is a proper prefix of the well-formed formula b, so op $(m)>c l(m)$.
By inspection of $c, o p(c)=o p(a)+o p(m)>c l(a)+c l(m)=c l(c)$.
Thus, c has more opening than closing brackets. By Lemma 3, c is not a wellformed formula.

