
CSC2411 - Linear Programming and
Combinatorial Optimization∗

Lecture 8: Ellipsoid Algorithm

Notes taken by Shizhong Li

March 15, 2005

Summary: In the spring of 1979, the Soviet mathematician L.G.Khachian
discovered a polynomial algorithm for LP calledEllipsoid Algorithm. This
discovery classifies the linear programming problem in class P for the first
time. After the high level introduction of the algorithm in the last class,
we turn to discuss it in details in this lecture.Ellipsoid Algorithm.

1 Sketch of the Ellipsoid Algorithm

1.1 Pseudocode of Ellipsoid Algorithm

Algorithm 1.1 (Ellipsoid Algorithm).

input : A, b
output: x ∈ P or “P is empty” whereP = {x ∈ Rn|Ax < b}
init : k = 0 /* iteration counter */

R = n2L /* initial radius to look at */
N = 16n(n+ 1)L /* maximum number of iterations needs to perform */
E0 = B(0, R) /* initial search space */
if k = N then

announce “P is empty”
if ck =center(Ek) satisfiesAck < b then

outputx
else

find inequality(ai, x) < bi that is violated byck, so(ai, ck) ≥ bi while for (ai, x) < bi,∀x ∈ P
findEk+1 with the following properties

(i) Ek+1 ⊃ Ek ∩ {x|(ai, x) < b}
(ii) Vol (Ek+1) ≤ e−

1
2(n+1) · Vol(Ek)

endif

∗ Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

1

1.2 Proof of the correctness

Proof. if the alogrithm the stops and finds a feasible solution, this is clearly fine.
If the algorithm stops and does not find a feasible solution, we have to show thatP = ∅.
Notice that in the algorithm, Vol(Ek+1) ≤ e−

1
2(n+1) · Vol(Ek), we have Vol(EN) ≤

e−
N

2(n+1) · Vol(E0)
AssumeP is not empty afterN iterations. We know from last class, Vol(P) ≥
2−O(nL) and now Vol(E0) ≤ (2R)n = (2n)n · 2nL.

Thus Vol(EN) ≤ Vol(E0) · e−
N

2(n+1) ≤ (2n)n · 2nL · e−
N

2(n+1) .

For a large enough constantk,N = kn2L,Vol(EN) ≤ en
2+n+nL− kn2L

2(n+1) ≤ e−O(nL) =
Vol(P).
However,P ⊂ EN , it is a contradiction.

2 How to find the next Ellipsoid

Definition 2.1. Ellipsoid is the image under an offine map of a unit ballB(0, 1) inRn.
E = T (B)

= {T (x)|x ∈ B}
= {Ax+ c|||x|| ≤ 1}
= {y|||A−1(y − c)|| ≤ 1}
= {y|(y − c)t(A−1)tA−1(y − c) ≤ 1}
= {y|(y − c)tQ−1(y − c) ≤ 1} whereQ = AAt

Q is n × n symmetric matrix which isPositive Definite, that is: ∀x ∈ Rn and
x 6= 0, xtQx > 0

For example,B(0, 1) is the ellipsoid withQ = I,B(0, r) is withQ = r2I.

Theorem 2.2. For an ellipsoidB andE whereE = T (B), T is an affine transforma-
tion, then Vol(E) = Vol(T (B)) =

√
det(Q) · Vol(B).

Theorem 2.3. (Löwner John): LetK ∈ Rn be convex, then there is a (unique) ellipsoid
E containingK and of minimal volume, further1nE ⊂ K ⊂ E.

See Figure[??],K is calledLJ ellipsoid. In our case,K is half-ellipsoid, and we
will show how to find the LJ ellipsoid ofK.

We use linear transformation to transform the ellipsoids in Figure[??] to Figure[??].
Notice that we transform the original ellipsoidE to a unit ballB(0, 1), 1

2E is tran-
formed to the northern halfballG, and the minimal volume ellipsoidE′ is transformed
to F .

First we need to prove we do not change the ratio of the volume betweenE′ andE

by the transformation, that isVol(F)

Vol(B)
= Vol(E′)

Vol(E)
.

Proof. Let T be the mapping, that isE = T (B) and 1
2E = T (G), thusB = T−1(E),

G = T−1(1
2E), and the half space of the intersect is{x ≥ 0}. SupposeF is the

2

Figure 1: K ∈ Rn is a convex,E is the ellipsoid containingK with the minimal
volume.

ellipsoid we found, thenF = T−1(E′). By Theorem??, we have Vol(F) = Vol(E′) ·
det(T−1) and Vol(B) = Vol(E)·det(T−1), then we haveVol(F)

Vol(B)
= Vol(E′)·det(T−1)

Vol(E)·det(T−1)
=

Vol(E′)
Vol(E)

.

How to find the new ellipsoidE in Figure[??]? Recall Definition [??], we have
E = {|(x − c)tQ−1(x − c) ≤ 1}, wherec = (0, 0, ..., 0, t) is the center ofE.
We transformE from the unit ballB(0, 1), thus by Theorem??, we have Vol(E) =√

det(Q) · Vol(B(0, 1)). We require1
2B to be contained inE.

We notice that we can getE by shrinking the unit ballB(0, 1) in vertical direction and
shift it upward, stretchingB(0, 1) symmetrically orthogonal to the vertical direction.
We also notice thatE is symmetic in all directions, that meansQ is a diagonal matrix.
Thus we can writeQ as:

Q =

α

...
α

β

where last row corresponds to the vertical direction.

Now we can set our goals in formula:
Goal: findα, β, c so that1

2B ⊂ E and Vol(E) must be minimized, that is det(Q) is
minimized (by Theorem??). We have the following equations:

min(αn−1β) (by min(det(Q)), since Vol(E) =
√

det(Q) · Vol(B(0, 1)))
(1− t)2β−1 = 1 (for x = (0, 0, .., 0, 1), (x− c)tQ−1(x− c) = 1)
α−1| ~x1|2 + β−1c2 = 1 (for x = (~x1, 0) and| ~x1|2 = 1, (x− c)tQ−1(x− c) = 1)

From (1 − t)2β−1 = 1, we can getβ = (1 − t)2. Fromα−1| ~x1|2 + β−1c2 = 1

3

Figure 2: Original ellipsoidE, we need a new ellipsoidE′ to contain1
2E with minimal

volume.

Figure 3: We use linear transformation to transformE to a unit ballB, now 1
2E is the

northern half-ballG, F is transformed fromE′.

4

Figure 4: We need to find an ellipsoidE to contain1
2B which is the northern half ball.

E has the minimal volume, andc is the center ofE.

and | ~x1|2 = 1, we get 1
α + t2

β = 1. Then we substituteβ = (1 − t)2, we can get

α = (1−t)2

1−2t .

We denoteF = αn−1β, substituteα, β, thenF = ((1−t)2

1−2t)n−1(1 − t)2. To get

min(F), we forcedFdt = 0. dF
dt = 2n(1 − t)2n−1(−1)(1 − 2t)1−n + (1 − t)2n(1 −

n)(1 − 2t)−n(−2) = 0 =⇒ t(n + 1) − 1 = 0 =⇒ t = 1
n+1 . We substitute back

α = (1−t)2

1−2t = n2

n2−1 andβ = (1− t)2 = n2

(n+1)2 .

Thus we optimized min(αn−1β) whenα = n2

n2−1 ,β = n2

(n+1)2 andt = 1
n+1 .

det(Q) = αn−1β
= (1 + 1

n2−1)n−1(1− 2n+1
(n+1)2)

≤ (e
1

n2−1)n−1e
−2
n+1 (for x > 0, 1 + x ≤ ex∀x)

= e−
1

n+1

Hence the

factor of shrinkage in the volume is
√

det(Q) = e−
1

2(n+1) .

Above we restrictB as a ball, but we can relaxB to any ellipsoid. In general, if
Ek = E(Qk, ck), thenEk+1 = E(Qk+1, ck+1), where
Qk+1 = n2

n2−1 (Qk − 2
n+1vv

t) wherevvt is the matrixaij = vi · vj
ck+1 = ck − 1

n+1v

v = Qkai√
atiQkai

whereai is the vector defining the violated constant.

5

3 Implementation issues

3.1 Rounding

The fact that not all
√
atiQkai are rational numbers and the fact that the numbers defin-

ing the ellipsoid can grow too fast, leads to a modification of the above, namely round-
ing all the numbers. We round the entries ofQ and all other numbers in the transfor-
mation while:

1. Q must be positive definite

2. the ”rounded” ellipsoid must still contain12Ek

3. the volume of the rounded ellipsoid is not much bigger than the original one

For this rounding process, we have the following parameters:
P : for the accuracy needed, the number of digits we round after.
ε: the scaling factor of the ellipsoid after rounding.

For example, if we selectN = 50n2L,P = 8N, ε = 1 + 1
4n2 , it will give a satis-

factory result.

3.2 Ellipsoid Algorithm is not a strongly polynomial algorithm

Definition 3.1. elementary arithmetic operations: We countaddition, subtraction,
multiplication, division, comparisonas one step rather than the number of moves of a
head onTuring machine. We call itarithmetic model.

Definition 3.2. strongly polynomial time: We say that an algorithm runs instrongly
polynomial timeif the algorithm is a polynomial space algorithm and performs a num-
ber of elementary arithmetic operations which is bounded by a polynomial in the num-
ber of input numbers. Thus a strongly polynomial algorithm is a polynomial space
algorithm (in standard Turing machine model) and a polynomial time algorithm in the
arithmetic model.

We say Ellipsoid Algorithm runs in polynomial time at mostN = 16n(n + 1)L
iterations, each iteration is polynomial time. However,L = log(|P |) where P is the
nonzero coefficients inA, b, c. It means the running time is not only depends on the
number of input numbersm × n, but also depends onP which is the value of the
input numbers. By the definition ofstrongly polynomial time, a strongly polynomial
algorithm must perform a number of elementary arithmetic operations bounded by a
polynomial in thenumber of input numbers. Obviously, Ellipsoid Algorithm performs
arithmetic operations bounded also by the value of the input numbers. Thus, Ellipsoid
Algorithm is not astrongly polynomial algorithm.

6

3.3 Abstraction for the algorithm oracle

Definition 3.3. oracle: we can imagine anoracleas a device that can solve problem
for us. We make no assumption on how a solution is found by the oracle.

Definition 3.4. oracle algorithm: is an algorithm which can “ask questions” from an
oracle and can use the answers supplied.

Definition 3.5. polynomial transformation: suppose we have two decision problems
Π andΠ′, a polynomial transformation is an algorithm which given an encoded in-
stanceσ of Π, produces in polynomial time an encoded instanceσ′ of Π′ such that
the following holds: For every instanceσ of Π, the answer is “yes” if and only if the
answer toσ′ is “yes”.

Clearly, if there is a polynomial algorithm to solveΠ′ then by polynomially transform-
ing any instance ofΠ to an instance ofΠ′ there is also a polynomial algorithm to solve
Π.
Optimization problems are not decision problems. But in minimization(maximization)
problems, we can ask “Is there a feasible solution whose value is at least(most)Q?”.
If we can solve this “yes/no” question in polynomial time(i.e Ellipsoid Algorithm), we
can continue asking “Is there a feasible solution whose value is at least(most)Q

2 ?”...“Is
there a feasible solution whose value is at least(most)Q

2n ?”. Thus we are using binary
search to find the optimal solution. The number of iterations isn = log(Q), it is the
length of inputQ. Obviously we run polynomial times of iterations, each iteration
is also polynomial. Thus we can solve an optimization problem in polynomial time
through a polynomial oracle. For Ellipsoid Algorithm to work, we need answers to the
following queries:

1. Isx ∈ P?, we call it “Membership Oracle”

2. If NOT, a plane separatingx from P , we call it “Separation Oracle”

So Ellipsoid Algorithm really tells us that given those oracles to a problem and
guarantees of not too large initial search space and not too small possible volume for
P 6= ∅, we get a polynomial solution.

4 Tutorial

4.1 Yao’s min-max principle

From last week’s lecture, we know Yao’s min-max principle:

minA∈AE[C(Ip, A)] ≤ maxI∈IE[C(I,Aq)]

whereA is a set of algorithms,I is a set of inputs,C(I,A) is the running time of
algorithmA with input I.

7

Figure 5: A decision tree for sorting problem. Forn input numbers, we haven! per-
mutations. Hence, there aren! leaves in the tree.

The expected runnning time of the best deterministic algorithm on some input distribu-
tion is a lower bound for the expected running time of the best randomized algorithm
on an arbitrary input.

We have the following theorem:

Theorem 4.1. The worst-case expected time of any randomized sorting algorithm is
Ω(nlog(n)).

Proof. See Figure[??], it is a sorting problem with a random permutation ofn num-
bers. Since there aren! possible permutations of then input numbers, the decision tree
must haven! leaves. Different permutation goes to the different branch of the decision
tree.

Since n!
2 > 2αnlog(n) for some0 < α < 1, there are at least12 of the leaves

are at the distanceΩ(nlog(n)) from the root. Thus the expected running time of any
deterministic algorithm on this random input isΩ(nlog(n)).

4.2 Example of Ellipsoid Algorithm

We show an example to run Ellipsoid Algorithm:Ax ≤ b

1. −x1 + 0.2x2 ≤ −8

8

2. x1 + x2 ≤ 4

3. 0.3x1 − x2 ≤ 9

Step 1:

Setn = 2, c0 = (0, 0)t, Q0 =
(

132 0
0 132

)
. Check whetherc0 = (0, 0)t satisifies

the inequalities above. We find(1) is not satisfied. Thus leta = (−1, 0.2)t, we get

v =
Q0a√
atQ0a

= (−12.7475, 2.5495)t.

c1 = c0 −
v

n+ 1
= (0, 0)t − (−12.7475, 2.5495)t

2 + 1
= (4.2492,−0.8498)t.

Q1 =
n2

n2 − 1
(Q0 −

2
n+ 1

vvt) =
(

80.8889 28.8889
28.8889 219.5556

)
.

Step 2:
We check whetherc1 = (4.2492,−0.8498)t satisfies the inequalities. We find(1) is
not satisfied. Thus leta = (−1, 0.2)t, we get

v =
Q1a√
atQ1a

= (−8.4984, 1.6997)t.

c2 = c1−
v

n+ 1
= (4.2492,−0.8498)t− (−8.4984, 1.6997)t

2 + 1
= (7.0820,−1.4164)t.

Q2 =
n2

n2 − 1
(Q1 −

2
n+ 1

vvt) =
(

43.6543 51.3580
51.3580 290.1728

)

...

Step 8:
We findc8 = (7.4929,−6.4397)t. This is a solution satisfies the inequalities. So we
are done.

References

[1] Martin Grötschel, Ĺaszĺo Lovász,Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization, 2nd Corrected Edition.Springer-Verlag , pages
26-33 1993.

9

