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Summary: Inthe spring of 1979, the Soviet mathematician L.G.Khachian
discovered a polynomial algorithm for LP callBdipsoid Algorithm This
discovery classifies the linear programming problem in class P for the first
time. After the high level introduction of the algorithm in the last class,
we turn to discuss it in details in this lectutgllipsoid Algorithm

1 Sketch of the Ellipsoid Algorithm

1.1 Pseudocode of Ellipsoid Algorithm
Algorithm 1.1 (Ellipsoid Algorithm).

input: A,b
output: z € P or “P is empty” whereP = {z € R"| Az < b}
init: £ = 0 /* iteration counter */
R = n2" [* initial radius to look at */
N = 16n(n + 1)L /* maximum number of iterations needs to perform */
Ey = B(0, R) [* initial search space */
if k= N then
announce “P is empty”
if ¢, =cente(E},) satisfiesAc;, < bthen
outputz
else
find inequality(a;, x) < b; that is violated by, so(a;, cx) > b; while for (a;, x) < b;,Vx € P
find £} 1 with the following properties
() Exy1 D Ex N {:c|(ai,x) < b}
(i) Vol (Ej11) < e 750 - Vol (Ey)
endif

* Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.



1.2 Proof of the correctness

Proof. if the alogrithm the stops and finds a feasible solution, this is clearly fine.
If the algorithm stops and does not find a feasible solution, we have to shof thdt.
Notice that in the algorithm, VOE 1) < e T Vol (E}), we have VO[EN) <
efﬁ VO|(E0)
AssumeP is not empty afterN iterations. We know from last class, Vét) >
2-0(nL) and now Vo[ Ey) < (2R)" = (2n)" - 2"F.
Thus Vo Ex) < VoI(Ep) - e 200 < (2n)" - 2L - ¢~ 30D

2
For a large enough constantN = kn?L, Vol (Ey) < S Gy < = Onl) —
Vol (P).
However,P C Ey, itis a contradiction. O

2 How to find the next Ellipsoid

Definition 2.1. Ellipsoid is the image under an offine map of a unit i(D, 1) in R™.
E T(B)

{T(z)|x € B}

{Az + cf||z]] < 1}

(A~ y — o)l <1}

{yl(y =)' (A A (y—c) <1}

{yl(y — o' Q7' (y — ¢) < 1} where@ = AA’

Q@ is n x n symmetric matrix which idPositive Definitethat is: Vo € R™ and
x#0,2'Qz >0

For example3(0, 1) is the ellipsoid withQ = I, B(0,r) is with Q = 1.

Theorem 2.2. For an ellipsoid B and E whereE = T'(B), T is an affine transforma-

tion, then Vo[E) = Vol(T'(B)) = /det(Q) - VoI(B).

Theorem 2.3. (Léwner John): Lef< € R™ be convex, then there is a (unique) ellipsoid
E containing K and of minimal volume, furtheng CKCE.

See Figure??], K is calledLJ ellipsoid In our case K is half-ellipsoid, and we
will show how to find the LJ ellipsoid of .

We use linear transformation to transform the ellipsoids in Fiquilep Figure[?7].
Notice that we transform the original ellipsofd to a unit ball B(0, 1), %E is tran-
formed to the northern halfbad¥, and the minimal volume ellipsoil” is transformed
to F.

First we need to prove we do not change the ratio of the volume betiveand £/

) Mol(m) _ Vol
by the transformation, that igg B ~ Wl&) "

Proof. Let T be the mapping, that & = 7'(B) and1E = T(G), thusB = T~ 1(E),
G = T7'(1E), and the half space of the intersect{is > 0}. SupposeF is the



Figure 1: K € R™ is a convex,E is the ellipsoid containing< with the minimal
volume.

ellipsoid we found, thed” = T—1(E’). By Theoren??, we have Vo{F') = Vol(E’) -

det7!) and Vol B) = Vol (E)-defT~!), then we havg\;ﬂgﬂ \\//%I ((g))_‘dgg:)) =

\Vol(e) O
Vol (k) -

How to find the new ellipsoid” in Figure[??]? Recall Definition 7], we have
E = {|(z — o)'Q Yz — ¢) < 1}, wherec = (0,0,...,0,t) is the center ofE.
We transformk from the unit baIIB(O 1), thus by Theoren??, we have Vo(E) =
\/det(@) - Vol(B ). We requweLB to be contained irk.
We notice that we can gét by shrlnklng the unit balB(0, 1) in vertical direction and
shift it upward, stretching3(0, 1) symmetrically orthogonal to the vertical direction.
We also notice thak’ is symmetic in all directions, that mea@sis a diagonal matrix.

Thus we can writ&) as:
(6%

Q=
B

where last row corresponds to the vertical direction.

Now we can set our goals in formula:
Goal: finda, 3, ¢ so thati B C E and Vol E) must be minimized, that is de) is
minimized (by Theoren??). We have the following equations

min(a™~13) (by min(det@)), since Vo[ E) = /det @) - Vol (B(0,1)))

(1-t)?p71=1 (forz = (0,0, ..,0,1), (x—c)tQ 1(ac—c)—l)

a P+ 8712 =1 (forz = (21,0) and|7i]?> = 1, (v — ¢)!'Q 1 (x — )
From(1 —¢)?2371 = 1, we can gef3 = (1 — t)°. Froma‘1|x1|2 + 871 = 1



Figure 2: Original ellipsoidZ, we need a new ellipsoif’ to contain%E with minimal
volume.

Figure 3: We use linear transformation to transfdnto a unit ball3, now 1 E is the
northern half-ballz, F is transformed fronE’.
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Figure 4: We need to find an ellipsoid to contain%B which is the northern half ball.
E has the minimal volume, andis the center ofz.

and|z1|? = 1, we getl + £ — 1. Then we substituté = (1 — )2, we can get

B
(1-)?
T—2t

We denoteFr = a™~13, substitutea, 3, then F = ( )"—1(1 — t)2. To get
min(F), we force4t = 0. 4€ = 2p(1 — )>"~1(—1)(1 — t)l—" + (1 —t)%n(1 -
n)(1 — 2t)~"(-2 ) =0=t(n+1)—1=0=t= 5. We substitute back

1—t)? n2
= (17;1 =g andf = (1-1)*= CESHER

Thus we optimized mifw"~!3) whena = n;‘—il,ﬁ = (n+1)2 andt = n_+1
detQ) = o'
(1 + n21—1)n71(1 - (ir—lij)lQ)

o =

1 ) Hence the
< (em?-1)nTlensn (forx > 0,1+ <e"Vzx)

1
= e n+l

factor of shrinkage in the volume igdet(Q) = e~ el

Above we restrictB as a ball, but we can rela® to any ellipsoid. In general, if
E, = E(Qk,ck) thenEkH = E(Qk_H, Ck+1)y where
Qi1 = 7 (Qk nvat) wherevv! is the matrixa;; = v; - v;

Ck+1 = Cp — ﬁv
Qka1 B .. .
v = Jatara: wherea; is the vector defining the violated constant.



3 Implementation issues

3.1 Rounding

The fact that not all/a!Qa; are rational numbers and the fact that the numbers defin-
ing the ellipsoid can grow too fast, leads to a modification of the above, namely round-
ing all the numbers. We round the entries(piand all other numbers in the transfor-
mation while:

1. @ must be positive definite
2. the "rounded” ellipsoid must still conta%wE;c
3. the volume of the rounded ellipsoid is not much bigger than the original one

For this rounding process, we have the following parameters:
P: for the accuracy needed, the number of digits we round after.
e: the scaling factor of the ellipsoid after rounding.

For example, if we seled¥ = 50n2L, P = 8N,e = 1 + #, it will give a satis-
factory result.

3.2 Ellipsoid Algorithm is not a strongly polynomial algorithm

Definition 3.1. elementary arithmetic operations We countaddition subtraction
multiplication, division, comparisoras one step rather than the number of moves of a
head onTuring machine We call itarithmetic model.

Definition 3.2. strongly polynomial time: We say that an algorithm runs gtrongly
polynomial timef the algorithm is a polynomial space algorithm and performs a num-
ber of elementary arithmetic operations which is bounded by a polynomial in the num-
ber of input numbers. Thus a strongly polynomial algorithm is a polynomial space
algorithm (in standard Turing machine model) and a polynomial time algorithm in the
arithmetic model.

We say Ellipsoid Algorithm runs in polynomial time at mast = 16n(n + 1)L
iterations, each iteration is polynomial time. However= log(|P|) where P is the
nonzero coefficients i, b, c. It means the running time is not only depends on the
number of input numbers: x n, but also depends off which is the value of the
input numbers. By the definition aftrongly polynomial timea strongly polynomial
algorithm must perform a number of elementary arithmetic operations bounded by a
polynomial in thenumber of input numbers. Obviously, Ellipsoid Algorithm performs
arithmetic operations bounded also by the value of the input numbers. Thus, Ellipsoid
Algorithm is not astrongly polynomial algorithm



3.3 Abstraction for the algorithm oracle

Definition 3.3. oracle we can imagine aoracleas a device that can solve problem
for us. We make no assumption on how a solution is found by the oracle.

Definition 3.4. oracle algorithm: is an algorithm which can “ask questions” from an
oracle and can use the answers supplied.

Definition 3.5. polynomial transformation: suppose we have two decision problems
IT andIT’, a polynomial transformation is an algorithm which given an encoded in-
stanceo of II, produces in polynomial time an encoded instast®f II' such that
the following holds: For every instaneeof II, the answer is “yes” if and only if the
answer tar’ is “yes”.

Clearly, if there is a polynomial algorithm to solVE then by polynomially transform-

ing any instance ofI to an instance dfl’ there is also a polynomial algorithm to solve
II.

Optimization problems are not decision problems. But in minimization(maximization)
problems, we can ask “Is there a feasible solution whose value is at least(@st)

If we can solve this “yes/no” question in polynomial time(i.e Ellipsoid Algorithm), we
can continue asking “Is there a feasible solution whose value is at Ieast(%dbé:t)‘ls
there a feasible solution whose value is at Ieast(mﬁSP)’. Thus we are using binary
search to find the optimal solution. The number of iterations is log(Q), it is the
length of input@. Obviously we run polynomial times of iterations, each iteration
is also polynomial. Thus we can solve an optimization problem in polynomial time
through a polynomial oracle. For Ellipsoid Algorithm to work, we need answers to the
following queries:

1. Isxz € P?, we call it “Membership Oracle”
2. If NOT, a plane separatingfrom P, we call it “Separation Oracle”

So Ellipsoid Algorithm really tells us that given those oracles to a problem and
guarantees of not too large initial search space and not too small possible volume for
P =+ (), we get a polynomial solution.

4 Tutorial

4.1 Yao’s min-max principle

From last week’s lecture, we know Yao’s min-max principle:

minac AE[C(Z,, A)] < maziezE[C(I, Ay)]

where A is a set of algorithmsT is a set of inputs(C'(7, A) is the running time of
algorithm A with input 1.
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Figure 5: A decision tree for sorting problem. Feoinput numbers, we have! per-
mutations. Hence, there an¢leaves in the tree.

The expected runnning time of the best deterministic algorithm on some input distribu-
tion is a lower bound for the expected running time of the best randomized algorithm
on an arbitrary input.

We have the following theorem:

Theorem 4.1. The worst-case expected time of any randomized sorting algorithm is
Q(nlog(n)).

Proof. See Figure??), it is a sorting problem with a random permutationrohum-
bers. Since there aré possible permutations of theinput numbers, the decision tree
must haven! leaves. Different permutation goes to the different branch of the decision
tree.

Since2 > 201100 for some0 < a < 1, there are at leas} of the leaves
are at the distanc@(nlog(n)) from the root. Thus the expected running time of any
deterministic algorithm on this random input¥nlog(n)). O

4.2 Example of Ellipsoid Algorithm

We show an example to run Ellipsoid Algorithmz < b

1. —2; + 0229 < -8



2. 21 +20 <4
3.03z1 —22<9

Step 1:
132 0
Setn = 2700 = (070)t7Q0 = < 0 132
the inequalities above. We fird) is not satisfied. Thus let= (—1,0.2)?, we get

. Check whether, = (0,0)" satisifies

_ 9% (197475, 2.5495)",
v atQoa
v ¢ (—12.7475,2.5495) B .
e =co— == =(0,0) 51 = (4.2492, —0.8498)".
n? 2, 80.8889  28.8889
Qr= g @) = < 28.8889  219.5556 ) '
Step 2:

We check whether; = (4.2492, —0.8498)" satisfies the inequalities. We fird) is
not satisfied. Thus let = (—1,0.2)*, we get

_ Qia
VaiQra

v
=c1——— = (4.2492, -0.84
Co C1 7’L+1 ( 9, 0.8 98)

= (—8.4984,1.6997)".

—8.4984. 1. ¢
o (Z84984, L6997 7 1590 —1.4164)".

2+1
n? 2, 43.6543  51.3580
Q= (@) = ( 51.3580 290.1728 >
Step 8:

We findcg = (7.4929, —6.4397)*. This is a solution satisfies the inequalities. So we
are done.
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