
CSC2411 - Linear Programming and
Combinatorial Optimization∗

Lecture 13: Semidefinite Programming (SDP)
Relaxation.

Notes taken by Kevin Yuen

April 13, 2005

Summary: In this lecture, we give two example applications of approx-
imating the solutions to NP-hard problems by solving the relaxed SDP
and rounding. We begin with Max Cut, where we present the Geomans-
Williamson Maxcut algorithm, a randomized algorithm that achieves an
approximation ratio of 0.878. Next, we look at Graph Coloring, for which
we give an algorithm due to Karger-Motwani-Sudan that can color a 3-
colourable graph using O(n0.386) colors. Finally, we introduce Lovasz
Theta-Function, a SDP formulation that defines the vector chromatic num-
ber of a graph, and discuss its significance for the class of perfect graphs.

1 Max Cut

In the Max Cut problem, we have an undirected graph G = (V,E). In the unweighted
case, we simply want to partition the vertices of the graph into two sets such that the
number of edges with vertices in both sets are maximized. In other words, we want to
find S ⊂ V (G) such that |{(i, j) ∈ E(G)| |{i, j} ∩ S| = 1}| is maximized. Refer to
Figure 1 for an example of Max Cut.

Motativation Given n activities and m persons. Each activity can be scheduled either
in the morning or in the afternoon. Each person is interested in two activities. The task
is to schedule the activities to maximize the number of persons that can enjoy both
activities. This can be formulated as a Max Cut problem by converting the activities
into vertices and persons into edges.

Known complexity results about Max Cut:

• Getting an approximation ratio of 0.942 is NP-hard (Håstad ’97).

∗ Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

1

Figure 1: An example of Max Cut.

• Best approximation ratio known, without SDP, is 1
2 using a greedy algorithm.

Here’s the greedy algorithm:

– Start with any arbitrary cut.

– If some node has more neighbours on its side than on the other side, then
move it to the other side. Repeat.

At this end, at least half of the edges are crossing the cut.

• With SDP, an approximation ratio of 0.878 can be obtained (Goemans-Williamson
’95).

Here is a way to describe the problem in Integer Quadratic Programming (IQP), we
introduce variables xi ∈ {−1, 1} for every vertex in the graph. The semantics is that
xi = 1 if i ∈ S, and xi = −1 if i ∈ S. With this notation, xixj = 1 if i and j belong
to the same set, and xixj = −1 if i and j belong to the opposite sets. Thus,

1 − xixj

2
=

{

1 |{i, j} ∩ S| = 1
0 otherwise

We now present an IQP formulation of Max Cut.

max
∑

(i,j)εE
1−xixj

2 s.t.

xi ∈ {−1, 1}

Since solving this IQP is NP-hard, we want to relax this formulaton. Due to the prod-
uct xixj in the IQP, it is no good to relax the integrality constraint to get a Linear
Programming (LP) formulation. Instead, we relax the dimensions of variables xi to get
a Vector Programming (VP) formulation, which is equivalent to a SDP formulation. In
the VP formulation, we treat each variable xi as a vector and denote 〈xi, xj〉 as the
inner product of xi and xj .

2

max
∑

(i,j)εE
1−〈xi,xj〉

2 s.t.

xi ∈ R
n

〈xi, xi〉 = 1

In this VP formulation, n is the number of vertices in the graph. The objective function
above rewards large separation between vertices that are connected by edges. Geo-
metrically, the SDP relaxation of Max Cut embeds the vertices of the graph on an unit
sphere such that if two vertices are joined by an edge, then these two vertices are far
apart. See Figure 2.

Figure 2: Geometric intuition for an SDP relaxation of Max Cut.

Example 1.1 (Integral vs Relaxed Max Cut). In this example, we consider the graph
G = C3. For the IQP, the optimal solution is OPTIQP (C3) = 2. On the other hand,
the optimal vectors of the VP relaxation lie in a 2-dimensional subspace and each pair
of vectors is 120 degrees apart, this result is proven in assignment 4. See Figure 3
for a graphical interpretation. Thus, ∀i 6= j, 〈xi, xj〉 = − 1

2 and OPTV P (C3) =

3
(

1+ 1
2

2

)

= 2 1
4 .

Figure 3: Optimal vectors of VP relaxation with C3.

1.1 Geomans-Williamson Maxcut algorithm

Geomans-Williamson formulated the above VP and proposed a method of rounding the
VP to get a cut. Then they showed that the cut produced will tend to have many edges.
We now concentrate on their randomized rounding algorithm.

3

Algorithm 1.2 (Geomans-Williamson Maxcut algorithm).

1. Solve VP and let x1, x2, . . . , xn be the solution.

2. Pick a random vector ~v in Sn.

3. Let S = {i|〈xi, ~v〉 ≥ 0}.

Note: We can compute ~v as follows:

~v =
(X1, X2, . . . , Xn)

||(X1, X2, . . . , Xn)||

where Xi ∼ N(0, 1), then ~v is a unit vector whose direction is uniformly
distributed over the n-dimensional unit sphere. We can define a hyperplane
by treating vector ~v as a normal of that hyperplane.

Some intuition:

• For solution ±1, we already got the obvious cut.

• The rounding is invariant to rotation, which is reasonable, since the solutions to
the VP are invariant to rotation.

Analysis Here, we analyze the approximation ratio of the Geomans-Williamson Max-
cut algorithm. For all edges (i, j) ∈ E, if xi = −xj , then Prob[edge (i,j) is separated] =

1. And this edge’s contribution to the objective function is 1−〈xi,xj〉
2 = 1. If xi = xj ,

then Prob[edge (i,j) is separated] = 0. And this edge’s contribution to the objective
function is 1−〈xi,xj〉

2 = 0.
In general, Prob[edge (i,j) is separated] = α

π
where α is the angle between xi and xj .

This fact is obvious if ~v is a random vector in the 2-dimensional circle. Refer to Fig-
ure 4 for an illustration. We now claim that this fact can be extended to dimensions
greater than 2.

Claim 1.3. For dimension n greater than 2, Prob[edge (i,j) is separated] = α
π

.

Proof. We prove this claim by showing that we can project ~v onto the 2-dimensional
plane spanned by vector xi and xj . From the construction of vector ~v, we can project
this vector onto any 2-dimensional space by considering only the first two Guassian
random variables in ~v while ignoring the rest.

Excepted # of separated edges
OPTSDP

=

∑

(i,j)εE Prob[edge (i,j) is separated]
∑

(i,j)εE
1−〈xi,xj〉

2

≥

min(i,j)
Prob[edge (i,j) is separated]

1−〈xi,xj〉
2

=
α
π

1−cos α
2

≥ 0.878

4

Figure 4: Prob[edge (i,j) is separated] = α
π

.

Note: 〈xi, xj〉 = cos α since xi and xj are unit vectors.

Remark 1.4. From (Feige-Schechtman ’00), the integrality gap (IG) is arbitary close
to 0.878. Specifically, there exists a graph, G, for which Max Cut(G)

OPTSDP (G) ≈ 0.878. This
means that no rounding can lead to a guarantee which is (always) better than 0.878.

Tightening the IG We can improve the IG by adding triangle inequality constraints
to the relaxed VP formulation. ||xi −xj ||2 ≤ ||xi −xk||2 + ||xk −xj ||2 is an example
of a triangle inequality constraint for vertices i, j, and k. Notice that such an inequality
holds for xi ∈ {+1,−1}, but it does not necessarily hold for x ∈ Sn, the unit sphere
on n dimensions. For example, consider three close points on the unit sphere (see
Figure 5), on the microscopic level, we can consider these three points as collienar
points. Let xi, xj , xk be three collinear points where xk is the middle point between
xi and xj . Let the distance between (xi, xj) be 1, then the distance between (xi, xk)
and (xk, xj) will be 1

2 . In this case, the triangle inequality constraint ||xi − xj ||2 ≤
||xi − xk||2 + ||xk − xj ||2 does not hold. Thus, adding triangle inequality constraints
may not necessarily improve the IG.

Figure 5: Collinear points on the unit sphere.

2 Graph Coloring

In the Graph Coloring problem, we have an undirected graph G = (V,E). We want to
color all vertices in the graph with as few colors as possible such that the coloring is

5

valid (no edge is monochromatic). Let χ(G) be the chromatic number of G, which is
equivalent to the minimum number of colors needed to color G.

Example 2.1.

1. χ(Kn) = n, where Kn is a clique with n vertices.

2. χ(bipartite graph) ≤ 2.

3. χ(planar graph) ≤ 4.

Known complexity results about Graph Coloring:

• NP-hard to approximate χ(G) to within n
1
7−ε.

• Best approximation ratio known is n
(loglog n)2

(log n)3 .

Suppose we restrict ourselves to 3-colorable graphs (χ(G) = 3) only, then how well
can we solve the Graph Coloring problem? Khanna-Linial-Safra (KLS ’93) showed
that Graph Coloring using 4 colors is still NP-hard. (Wigderson ’81) proposed an
algorithm that can color with O(

√
n) colors if X(G) = 3.

Facts Wigderson’s algorithm is based on the following facts:

1. For a 3-colorable graph, the neighborhood of every vertex can be colored
using 2 colors.

2. For a graph with max degree δ, it can be colored greedily with δ +1 colors.
Consider colors 1, 2, . . . , δ, δ + 1. List the vertices v1, v2, . . . , vn. The
following recursive/iterative algorithm colors G using at most δ +1 colors:

(a) Color v1 with color 1.

(b) For i = 2, . . . , n, color vi with smallest color not assigned already to
the vertices among {v1, . . . , vi−1} joined to vi (i.e. colors among the
vertices adjacent to vi that have already been colored). Since the max
degree is δ and we have δ + 1 colors, there will always be an available
color.

Algorithm 2.2 (Wigderson’s algorithm).

1. As long as there exists a vertex v with degree ≥ δ, we color the neighbors of
v with 2 colors. Afterwards, we discard the neighbors of v and the two colors
used.

2. For the remaining graph, color with δ colors.

6

Analysis Notice that the algorithm iterates step 1 for at most n
δ

times. Hence the
number of colors used is at most 2n

δ
+ δ = O(

√
n) for δ =

√
n.

We now present the relaxed VP formulation for Graph Coloring. In this VP formu-
lation, we introduce vector variables vi for every vertex in the graph. For every edge
(i, j) ∈ E, we have the constraint 〈vi, vj〉 ≤ λ. Geometrically, the SDP relaxation of
Graph Coloring embeds the vertices of the graph on the unit sphere such that if two ver-
tices are joined by an edge, then the angle between them must be no less than cos−1 λ.
And the objective function of the formulation minimizes λ, which is equivalent to max-
imizing the smallest angle separation between any two vertices that are connected by
an edge.

min λ s.t.

〈vi, vj〉 ≤ λ ∀(i, j) ∈ E

vi ∈ R
n

〈vi, vi〉 = 1

The following lemma motivates the above VP formulation.

Lemma 2.3. If χ(G) = 3, then λ ≤ − 1
2 .

Proof. Since G is 3-colorable, v = v1 ∪ v2 ∪ v3 where v1, v2, v3 are disjoint and there
are no edges between vertices in the same vi. We embed v1, v2, v3 to vectors G3 shown
in Figure 6.

Figure 6: Solution of the VP formulation with χ(G) = 3.

Algorithm 2.4 (KMS ’95 Part 1).

1. Solve VP and let v1, v2, . . . , vn be the soluton.

2. Choose T = dlog34e random hyperplanes ~v1, . . . , ~vt, where 4 is the maximum
degree of graph G.

3. Assign each vertex vi with a color that corresponds to its sign(vi, ~v) vector.
Where sign(vi, ~v) is a vector with t entries. The jth entry, denoted sign(vi, ~v)(j),
is 1 if 〈vi, ~vj〉 ≥ 0, or -1 otherwise. Since there are a total of 2t distinct sign vec-
tors, 2t colors will be used in this step. At this point, we want to analyze the

7

expected number of monochromatic edges generated by this algorithm so far.
For all edges (i, j) ∈ E, vi and vj are separated by at least 120 degrees. Thus,
Prob[(i,j) is monochromatic] ≤ (1

3)t ≤ 1
94 .

E[# of monochromatic edges] ≤ m· 1
94 ≤ n4

2 · 1
94 ≤ n

4 , where m is at most n4
2 .

4. After step 3, there will be at most n
4 monochromatic edges. We remove colors

from vertices with monochromatic edges and continue with the rest of uncolored
vertices. Notice that there are at most n

2 such vertices. In order to color all the
vertices, we need to repeat the steps above for log n iterations and each iteration
requires 2t colors. See Figure 7. In this part of the algorithm, the total number
of colors we used is 2t · log n ≈ 4log3 2 ≈ 40.631 ≤ n0.631. So far, there is no
improvement in the number of colors used when compared to the Wigderson’s
algorithm.

2t

2t

2t

2t

2t

2t

2t

Figure 7: Graph Coloring with (KMS ’95 Part 1).

To get the improvement, (KMS ’95) suggested the following hybrid algorithm,
which combines the algorithm above with Wigderson’s algorithm.

Algorithm 2.5 (KMS ’95 Part 2).

1. As long as there exists a vertex v with degree ≥ δ, we color the neighbors of
v with 2 colors. Afterwards, we discard the neighbors of v and the two colors
used.

2. For the remaining graph, color with O(δ0.631) colors using part 1 of (KMS ’95).

Analysis The total number of colors used in this algorithm is less than 2 n
δ

+ δ0.631.

The number of colors used is minimized when n
δ

= δ0.631 or equivalently δ = n
1

1.631 .

Thus, number of colors used = O(n
0.631
1.631) = O(n0.386).

8

3 Lovász Theta Function ’79

KMS essentially used a relaxed notion of coloring, which is called vector k-coloring:
we embed vertices in the unit sphere and require small inner product for two vectors
with corresponding vertices that are joined by an edge. A vector k-coloring of a graph
G = (V,E) is a sequence of unit vectors v1, v2, . . . , vn such that if (i, j) ∈ E then
〈vi, vj〉 = − 1

k−1 . Vector chromatic number is the minimum k for which G is vector
k-colorable. We can formulate the vector k-coloring problem as follows:

min k s.t.

〈vi, vj〉 ≤ − 1
k−1 ∀(i, j) ∈ E

vi ∈ R
n

〈vi, vi〉 = 1

Lovász defined the vector chromatic number of a graph G and it is named Lovász Theta
Function θ(G), where

ω(G) ≤ θ(G) ≤ χ(G)

and ω(G) is the size of maximal clique of graph G.

Lemma 3.1. Vector chromatic number of G is smaller or equal to its chromatic num-
ber, θ(G) ≤ χ(G).

Proof. Recall Lemma 2.3. If χ(G) = 3, then λ ≤ − 1
3−1 = − 1

2 .

Lemma 3.2. Size of maximal clique of G is smaller or equal to its vector chromatic
number, ω(G) ≤ θ(G).

Proof. It is enough to show that θ(Kn) ≥ n.

0 ≤ 〈
∑

vi,
∑

vi〉 =
∑

i

〈vi, vi〉 +
∑

i6=j

〈vi, vj〉

⇒
∑

i6=j

〈vi, vj〉 ≥ −n

⇒ ∃(i, j) for which 〈vi, vj〉 ≥
−n

n(n − 1)
=

−1

n − 1

So θ(Kn) ≥ n and θ(G) ≥ ω(G).

Definition 3.3. Perfect graphs are graph G for which ∀ induced subgraph H of G,

ω(H) = θ(H) = χ(H)

Claim 3.4. We can find the maximal clique in perfect graphs using θ(G).

9

Algorithm 3.5 (Finding maximal clique in perfect graphs).
MaxClique(G):

If θ(G\x) ≤ θ(G) then

• Include x in the maximal clique.

• MaxClique(N(x)), where N(x) is the neighborhood of x.

Else

• Exclude x in the maximal clique.

• MaxClique(G\x).

10

