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Summary: In this lecture, we give three example applications of ap-
proximating the solutions to IP by solving the relaxed LP and rounding.
We begin with Vertex Cover, where we get a 2-approximation. Then we
look at Set Cover, for which we give a randomized rounding algorithm
which achieves @ (log n)-approximation with high probability. Finally,
we again apply randomized rounding to approximate MAXSAT.

In the associated tutorial, we revisit MAXSAT. Then, we discuss primal-
dual algorithms, including one for Set Cover.

LP relaxation It is easy to capture certain combinatorial problems with an IP. We
can then relax integrality constraints to get a LP, and solve the latter efficiently. In
the process, we might lose something, for the relaxed LP might have a strictly better
optimum than the original IP. In last class, we have seen that in certain cases, we can
use algebraic properties of the matrix to argue that we do not lose anything in the
relaxation, i.e. we get an exact relaxation.

Note that, in general, we can add constraints to an IP to the point where we do not
lose anything when relaxing it to an LP. However, the size of the inflated IP is usually
exponential, and this procedure is not algorithmically doable.

1 Vertex Cover revisited

In the IP/LP formulation of VC, we are minimizing_ «; (or > w;z; in the weighted
case), subject to constraints of the foxgH- «; > 1 for all edges;, j. In the IP,x; is

1 when we have to pick sét and O otherwise. In the LP relaxation, we only ask that
0 < z; < 1. Actually, the upper bound om; is redundant, as the optimum solution
cannot have any; > 1.
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Let OPT(G) denote the optimum to the IP (which is what we want), and let
OPT;(G) denote the (fractional) optimum solution of the LP (which we can get ef-
ficiently). To see that for som&, OPT(G) < OPT(G), look atK3. In that case,
OPT(K3) = 2, butzy = 29 = z3 = 1/2 is a feasible LP solution with co8{/2, so
OPT}(K3) < 3/2. In fact, by symmetry we can argue tt@PT(Gs) = 3/2.

So we can get an optimal fractional solution to the LP with €@8t7, but what
we want is a good integral solution to the 1P, with cost clos@ BiT". If we were able to
always find the best integral solution, then we would solve V& se N P. Therefore,
we’ll settle for an integral solution which is “not too far” fromPT. The idea we are
going to use is teound certain fractionak;’s to integers. We will then argue about the
factor by which the objective function grows during the rounding. Before describing
the algorithm for VC, note the following Lemma.

Lemma Every vertex of the LP relaxation of VC is half-integral, meaning that all its
coordinates have values 0, 1/2 or 1.

Algorithm  Let x* denote an optimal fractional solution. Given the fact above, the
most natural rounding is to take the ceiling, i.e. weaset 0 if =7 = 0, andz; = 1 if
xf € {1/2,1}. In order to argue that we get a 2-approximation, we need to show that
() x is still feasible, and that (ii) at most a factor of 2 is lost in the rounding. The ratio
of the approximation algorithm is a measure of how far the integral optidtf’ is
from the integral solution we are building. In general, we do not kddir7’, so we
useOPT} instead, which is a lower bound @énPT.

To argue (i), assume that some constraint- ; > 1 for some edg€i, j) is
now unsatisfied. Them; = z; = 0. By the roundingxz; = z; = 0. But then
z} + 2% = 0 < 1, contradicting the assumption that is feasible. As for (ii),) | z; <
S 2-2f =2-0PTy <2-OPT.

Note that even without the Lemma, we could round anything below 1/2 to 0, any-
thing equal to or greater than 1/2 to 1, and the argument would still work.

Proof of Lemma Letz be a feasible solution which contains other than half-integral
values. So, for certaify z; € (0,1/2) and for certairy, z; € (1/2,1). We claim that
x is not a BFS of the LP. To prove this, we show thias not extreme.

The first thing to note is that there can be no edges in between vertjcaih both
z; < 1/2 andz; < 1/2, because the constrainf + z; > 1 would not be satisfied.
For some small but positive consider the solutions

x+e z€(1/2,1) x;—e x; € (1/2,1)
vl =q@i—e x;€(0,1/2) z; =qzi+e z;€(0,1/2)
z; otherwise z; otherwise

We can choose small enough so that values of all vertices do not leave the intervals
(0,1/2) and(1/2,1),i.e.z] € (1/2,1) iff x; € (1/2,1) etc.

Clearly,z = (z*+x7)/2. We claim bothz ™, z~ are still feasible. The only edges
(i, 7) which z* might violate are those which have at least one vertex; saith x; €



(0,1/2). But thenz; > 1/2, for otherwisex would not be feasible. I£; = 1, then

o +x] > 1. Otherwisex; € (1/2,1) andz +u] = (zi—e)+(xj+€) = zita; > 1

by feasibility ofx. A similar argument shows that™ is feasible. Hencey is a convex
combination of two different feasible solutions, therefore it's not an extreme and not a
BFS.

Notes There are trivial 2-approximation algorithms for VC, the entire machinery of
IP/LP solving and rounding wasn’t really necessary. However, it does make for a nice
application. The algorithm consists of the following steps.

e relax the IP to an LP;
e solve the LP;
e map the fractional optimum to the LP to a feasible integral solution;

e analyze that not much is lost in the translation.

Approximation ratios An algorithm A for a minimization problem is called am-
approximation ifo. = sup; % > 1. Note thatoe might depend on the size of the
input! (e.g.a = logn). For VC, we've seen a constant factor 2-approximation. For a

maximization problem, an algorithm is arapproximation ifac = inf; % <1.

Integrality Gap The integrality gap for a certain IP/LP formulation of a problem is
a bound on the ratio between the true integral optimum and the fractional optimum.

The IG of a minimization problem isup; Oolf%((fl)). and the IG of a maximization
OPT(I)

problem isinf; oFT; (1 Intuitively, the closer the IG is to 1, the better we hope the
approximation will be.

To analyze the IG for the VC formulation we've seen before, congiderFor this
instance, we hav® PT(K,,) = n—1. Butzy; = --- = x,, = 1/2is a feasible solution
to the LP, scOPTy(K,,) < n/2. HencelG > 2 — 2/n. Since on any instanck the
cost of the integral solution we produce is at 16@$tT'(I) and at mose - OPTy(I),
we get/G < 2. Therefore, for this formulation of VC, taking the supremum we get
I1G=2.

Tightening an IP  Suppose we have an IP for a minimization problem, and we have
to relax it to an LP. The LP might achieve smaller optimum cost than the IP by using
fractional solutions. Consider some constraint @@ integral solution must satisfy.
We can safely add any such constraint to the IP/LP formulation, without affecting the
integral optimum. However, the new constraint might eliminate certain fractional so-
lutions, so the fractional optimum can only increase, bringing it closer to the integral
optimum and lowering the IG.

For example, consider any triangdle j, k) in a graph instance of VC. No (integral)
vertex cover of the graph can include less than 2 vertices from that triangle. Hence, we
can safely add a constraint of the foum+ z; + x;, > 2 to the IP/LP formulation.



We do not chang® PT, since any feasible solution of the IP satisfies this constraint.
However, we might potentially increag&PT, thus reducing the I1G.

What can we hope to get in this way? Can we get a better than 2-approximation?
What other LP formulation can we consider? For example, if we apply the general
tightening technique by Lovasz-Schrijver [LS91], we get in one step constraints about
all odd cycles in the graph. Namely,ifis an odd cycle containing vertices, . . . , z;,

we can add the constrailﬁjﬁ=1 z; > |L]. This is strictly stronger than what we

can derive from individual edges, whichJs!_, > L. Arora, Bollobos and Lovasz
[ABLO2] consider all LP formulations which involve a constant fraction of the ver-
tices and that use the “natural” 0/1 variables, ug.for each vertex indicating if it

is taken in the cover. They also contain formulations that contain all odd cycle con-
straints among others. They show that despite these relatively strong formulations, the
integrality gap is stilR — o(1).

2 Randomized Rounding for Set Cover

Inthe Set Cover problem, we have a univdrsef n elements, anth subsets, ..., S, C

U. In the unweighted case, we simply want to minimize the number of sets we pick
in order to coverJ. Notice that VC is a special instance of SC, where the elements

of the universe are the edges, and we have a set for every vertex, containing the edges
incident to that vertex.

IP/LP formulation For the IP/LP formulation os SC, we consider the< m 0/1
matrix A, which hasa;; = 1if ¢ € S; and O otherwise. The sets correspond to
columns inA4, and elements of the universe to rowsAf The variabler; is 1 if we
have to takeS; and O otherwise. So, the IP/LP formulation is

min E Z;

subject to
A-x>1

Inthe IP,z; € {0,1}. In the LP, we only ask > 0. So, given the IP, we relax it to an
LP and solve the LP to get optimal fractional solutioh How do we map this to an
integral solution?

The idea is to think of the quantity; as a probability. So, instead of directly
mappingz* to an integral solution, we define a stochastic procedure to do this step.
For example, if the optimal fractional solutiona$ = (0,1/10,9/10), we would like
to be more likely to selec$s than S,, and we will never select;. So, in one pass
of randomized rounding, we (independently) pick theSewith probability ;. Note
that this rounding has the nice property of leaving integer values unchanged. Suppose
we do several (arounidg n) such passes, and we let our final cover be the union of all
the covers in the individual passes. In other words, we fka the final cover, if we
takeS; in any one pass. We would like to say that with high probability we get a cover
of U, and that with high probability, the objective function does not increase much.



We do not cover a certain elemanin one pass if none of the seisbelongs to
are taken in that pass. So, the probabiiitig not covered is exactly[ ;.. 5. (1 — 7).

The constraint corresponding ddn the LP says that_; . 2} > 1. So,

. x 1
Pr[a not covered in one palss 1—2)<[[e ™ =e 2% <et ==
[ ds HS (-5 <] -
After (logn + 2) iterations, we haven't coverediff we haven't covered it in any iter-
ation, i.e. with probability at most—(les7+2) < 4%. By union bound, the probability
that there exists an uncovered element dfiieg » + 2) passes is at most 1/4.
On the other handE[)" z;] = (logn +2) - > zf < (logn + 2) - OPTy. By
Markov’s inequality,

1
Pr[ x; >4-(logn +2)- OPTy] < i

Therefore, the probability that afté¢log n + 2) iterations we have a cover of cost
atmostd - (logn+2)- OPTyis atleast —1/4—1/4 = 1/2. We can apply the same
algorithm several times to amplify the probability of success.

This is probably the easiest algorithm using randomized rounding. Note that if
OPT is the true integral optimun() PTY} is the fractional optimum and is the re-
sult of roundingO PT} to an integral solution, we haw@ PTy < OPT < A. The
ratio OPT/OPT}y is controlled by the IG, and the ratié/OPT} is controlled by the
rounding process. Ultimately, we are interested in bounding the rBt@ PT'. In
particular, if we have a small IG, we also need a small loss in rounding to get a good
ratio.

For Set Cover, the IG iQ(logn). Feige [F??] showed that # # NP, no other
technique will do better. For Vertex Cover, the trivial 2-approximation algorithms are
essentially the best known.

3 Randomized Rounding for MAXSAT

The input to MAXSAT is a CNF formula, which is a collection of clauses. Each clause
is a disjunction of literals, and each literal is a boolean variable or the negation of a
variable. For example&, = z1 VT3 V x5 V 27 is a clause. The output in the MAXSAT
problem is an assignment that maximizes the number of satisfied clauses.

IP formulation In the IP formulation, we introduce 0/1 variablesfor every vari-
able in the formula, and 0/1 variableg; for every formulaC. The semantics is that
z; is 1 in the IP iffx; should be set torue in the formula, and¢ is 1 iff C is satisfied
by the assignment to variables.

For every claus€’, IetLJCr be the set of indices of variables appearing positively in
C, and letL_, be the set of indices of variables appearing negatively. For example, if
C =z Va5 VTr, wehavels = {1,5} andL; = {7}.



With this notation, the IP/LP is

max Z Zo
c

such that
St Y (w2
i€Ly i€eLg

The IP requires:;, Z¢ € {0, 1}, while the LP relaxation requiregs< x;, Z¢ < 1. To
see that the IP captures the problem, note that there is no pafiat eing 0 when”
is satisfied, for we are maximizing the sum of thg’s. Unlike in the case of VC, we
do need the< 1 constraints. The only constraint we do not actually neggis> 0.

Let (z*, Z*) denote an optimal fractional solution to the LP relaxation, with cost
OPTy. Next, setr; to true in the formula with probability:;. There’s no need to set
Zc, we simply setitto 1iiC is satisfied. Note that with MAXSAT, there are no issues
about feasibility of the constructed solution, as in the case of VC and SC.

Let us now study the probability a certain clauséas not satisfied. WlogC' =
x1 V---V x. We are assuming all literals are different, for two opposite occurences
of the same variable make the clause always true, and two occurences of the same sign
are redundant. Furthermore, we are assundingontains only positive literals, for
otherwise we can replacg by y;, and1l — =} by y;. For every claus€’, we seek to
relateZ¢ with the probability we satisfied clause

k
Pr[C not satisfied = H 1—a

IN

(k
(-
(

> ast > 7

1 ( ' ) , geometric mean at most arithmetic mean
k

IA

1-—

The functionh(z) =1 — (1 — %)k on the intervak € [0, 1] is concave, as

Dhey =k (-7 (—i) :

d? Z\ k=2 1

—h(z) = (k'fl)'(lf%) <k> <0.
Soh(z) =h((1—=%2)-0+2-1)>(1—2)-h(0)+2-h(1) =z-h(1). Therefore,
Pr[C satisfied > 1 — (1 — Z]{;é)k =nZE) > ZE h(1) = Z§ - (1 _ (1 _ Ii)k>
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Since) " Z5 = OPTy andOPT < OPTy, we now have

E[number of satisfied clauges= Z Pr[C satisfied
C

2l (-4
> OPT;- (1—2)

OPT. <1_1>
e

So, if the objective function “gainsZ;,, the rounded solution “gaing1 —1/e) - Z in
expectation. We thus get an assignment that satisfies a{least/e) - OPT clauses
in expectation. As before, the analysis involved bounding individually efery

Derandomizing the rounding Can we derandomize this algorithm, that is, decide
how to set the variables deterministically in such a way that we obtain the same number
of satisfied clauses, this time no longer in expectation? It turns out that for this problem,
we can. We know that the expectation over all choices;af at least som&'. What

we can do is to set; to true, simplify the formula, count the numbé&¥; of clauses

we satisfy directly and recompute the numbgrof clauses we expect to satisfy over

the choices over the remaining variablesTif+ T, > T', we leaver; set totrue and
continue. Otherwise, we set to false. We know that at least one of these choices
gives the number of clauses at le@st

El#satisfied = »_ Pr[C satisfied

c

= Z (Pr[z; = 1] - Pr[C satisfied; = 1] + Pr[z; = 0] - Pr[C satisfied; = 0])
c

= aj-) Pr[Csatisfiedr; = 1]+ (1 —27) - Y Pr[C satisfiedz; = 0]

C C
x; - E[# satisfiegi; = 1] + (1 — z}) - E# satisfieth; = 0]

At least one of the two conditional expectations must be at least the unconditional one.

4 Tutorial - Half-Approximation for MAXSAT

We are given a CNF formula with variables, . .., z,, and clause weighte.. We
want to find a truth assignment that maximizes the sum of the weights of the satisfied
clauses.
Suppose we randomly and independently assign eath eithertrue and false
with probabilities 1/2 and 1/2. A clause of siz@| is not satisfied with probability



2-I¢1 (we assume each variable occurs exactly once in every clause, either positively
or negatively). LetW be the random variable denoting the weight of the satisfied
clauses. Than

E[W] = wcPr[C satisfied = Y wc (1 _ Qfm)
c c

Since|C| > 1, we haveE[W] > 1/2- 3" , wc. Furthermore, the best we can hope for
is to satisfy all clauses, sp’, wc > OPT, and thereforéZ[IW] > 1/2 - OPT. This
is an easy 2-approximation.

We can derandomize this algorithm, so we can get a half-approximation determin-
istically. Consider a complete binary tree of depth We can label every node by
the set of literals that are set to true everywhere in the subtree below that node. So
label the root node witli, label the two children of the root witfw; } and{z1}, re-
spectively. In all nodes below the child labelléd, }, the variabler; is set totrue.
Conversely, belon{z;}, x; is set tofalse. The labels on level 2 below root are
{x1, 22}, {x1,Z2}, {T1, 22}, {71, T2 }. Our algorithm can be seen as selecting a cer-
tain leaf of this tree, where all vaiables are assigned to eftheror false.

At the root, we haveZ[IV]. Setx; to true. Some clauses will be satisfied (those
that containz;), saya of them. Other clauses will be simplified (those that contain
1), sayb of them. For the simplified clauses, we can get a 1/2-approximation. So if
continue along this branch, we can get at leasb/2 clauses satisfied in total, which is
a lower bound o [W |z, = 1]. SinceE[W] = 1/2-E[W |z, = 1]+1/2- E[W |z, =
0], we know at least one of the conditional expectations is at |[E48t]. We can
compute lower bounds on bofi{V|z; = 1] and E[W|x; = 0], and simply follow
the path along which the expectation is larger.

5 Tutorial - Complementary Slackness

Consider the primal IP/LP
min Z Cj.”L'j
j=1

subject to
n
S aiz; > by, foralll <i<m
Jj=1
z; >0

with its dual .
max Z bj,yi
=1
subject to

m
Zaijyi < Cjs forall 1 S] <n
i=1



yi >0

Let (z,y) be optimum solutions to the primal and the dual. The slackness condi-
tions are:

m
primal B 7& 0= Zaijyi =Cj

i=1

dual : yi#()#Zaijzj:bi

j=1

The idea of a primal-dual algorithm for an IP is to use primal-dual slackness to
solve the IP. This is not possible without breaking some hardness assumptions, but
we can get an approximation algorithm. For example, we can relax dual slackness
conditions and only require, for some> 1, that

yi#0:>2aij:cj Sabl
j=1
Note that by feasibility of:, we geth; < Z;;l i %j.

Theorem If we can find feasible primal and dual solutions satisfying primal slack-
ness conditions and-relaxed dual slackness conditions, theis ana-approximation.

n
chxj = Z CiZj, Since(L‘j >0
Jj=1

Jix; >0

Z L (Z aij?Ji), by primal slackness
i=1

j:$j>0

m
Z Zaijxjyi

Jix; >0 i=1

= > wi| D aywz; |, sincey; >0

i:y; >0 Jix; >0

= > i | D aiyz; |, added Oterms
j=1

i:y; >0

IN

> wi-a-b;, by relaxed dual slackness
i:y; >0

= a <Z biyi> , added 0 terms
=1

< «-OPT, sincey feasible.



The problem, then, is how to chose and how to take steps making sure these
conditions are satisfied. A general primal-dual algorithm look like the following.

start with integral (generally non-feasible) primal solution- 0

and with feasible dual solutiop= 0

while there exists a primal constraint not satisfied for seme
increasey; until one or many dual constrainfdbecome tight
setz; to 1 for all tight dual constraints

To prove a bound on the approximation ratio, we have to chosell.
Unweighted Set Cover The primal LP is
min Z Tg
s

subject to

Z zg > 1, for all elements

S:eS
x>0
and the dual LP is
max Z Yi
subject to
Zyi < 1, for all setsS
ies
y=>0

Relaxed dual slackness can be easily satisfied with f. Consider the following
primal-dual algorithm, following the general paradigm above:

start withz = 0, which is integral but not primal feasible
and withy = 0, which is dual feasible
while there exists some elememntot covered (i.e) _g.,cqzs < 1)
sety; to 1
setzg to 1 for all setsS containing: (i.e. pick all these sets as part of the cover)

The primal slackness conditions # 0 = . qy; = 1 is satisfied because in the
while loop we sety; = 1 for exaclty one elementfrom eachS. The f-relaxed dual
slackness conditiop; # 0 = ) ¢.,csxs < f -1 holds because for every element
we can select at most all sets containing it, and there are at fnofsthose. So this
algorith is anf-approximation to SC.
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