CSC2411 - Linear Programming and
Combinatorial Optimization
Lecture 1: Introduction to Optimization Problems
and Mathematical Programming

Notes taken by Victor Glazer

January 13, 2005

Summary: Introduction to optimization problems in general and Math-
ematical Programming in particular. Convex sets and functions. Convex
and Linear Programming.

Optimization Problems

Definition 1.1. An optimization problentonsists of a seéb, called thedomain and a
real-valued functiory : D — R, called theobjective function f(z) € R represents
the “profit” or “cost” associated witkk € D.

Optimization problems come in two flavours: minimization problems and maximiza-
tion problems. In anaximization problemthe goal is to find am: € D such that
f(y) < f(x) forally € D. In other words, we want a domain element which yields
the greatest profit. In minimization problemon the other hand, the goal is to find an
x € D such thatf(x) < f(y) for all y € D. In this case we want a domain element

which has the smallest cost.
In general,f may fail to have an optimum i®. However, ifD is finite then every
f has both a minimum and a maximumZn

Let’s look at a few examples.
1. Letp be a univariate polynomial. Where dgeattain its maximum value, if we
restrict it to the closed intervdl, 1] C R?

This is a maximization problem. The domainZis = [0, 1] and the objective
function f is simplyp itself.

* Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

2. What is the largest area enclosed by a two-dimensional (closed) curve of length
one?

This is a maximization problem. The domaln consists of all closed two-
dimensional curves of unit length, and the objective functfomaps a two-
dimensional curve to the area enclosed by it.

3. Recall the classical Minimum Spanning Tree (MST) problem. Suppose that we
are given an undirected gragh = (V, E) and a weight functionv : £ — R.

The weightW of a subgraptG’ of G with edge sef2’ C E is just the sum of

the individual weights of its edge$l’ (G’) . Y ecr w(e). A pathin G is

a sequence of vertices,...,v, € V, n < |V| such that(v;,v;1+1) € E for
1 <i < n—1. Acycleis a closed path, so that = v,. G is connectedf
there is a path between everyv € V,u # v, andacyclicif it doesn’t contain
any cycles. Aspanning tre€l’ of G is a connected acyclic subgraph@fwith
vertex set’. What is the least-weight spanning trees#?

This is a minimization problem. The domainigG) =4 {T : T is a spanning

tree of G}, and the objective function is the sum of the edge weiglfs,No-

tice that here the domain is finite, unlike in the previous two examples, since
|7(@)| < 2!FI. This problem isractablg meaning that there are polynomial-
time algorithms for it (where bpolynomial timewve meardeterministigpolyno-

mial timein the worst case The two best-known ones are due to Prithdnd
Kruskal [?], whereas Chazelle’'?] is currently the fastest.

4. Another classical optimization problem is the Travelling Salesman Problem (TSP).
We are given an undirected gragh= (V, E), whose vertices represent cities,
and a pairwise distance functieh: £ — R; d(u,v) is the distance between
citiesu,v € V. A Hamiltonian cyclein G is a cycle in which every € V

appears exactly once. Thength L of a cycleC = vy, ..., v, is the sum of the

distances between adjacent verticB§() = Z;:ll d(vi, viq1) + d(vg, v1).

What is the shortest Hamiltonian cycle@?

This is a minimization problem. The domainZgG) = {H:Hisa

Hamiltonian cycle inG} and the objective function is the cycle length As
with the MST problem, the domain here is finite. Unlike the MST problem,
however, TSP isntractable since it is NP-hard (and therefore does not have a
polynomial-time algorithm unlesB = N P).

5. A flow networkis a directed grapldr = (V, E) together with acapacity func-
tion ¢ : £ — R=Z° and two distinguished verticest € V; s is called the
sourceandt is called thesink For everyv € V, let IN (v) = {ee E:e=
(u,v) for someu € V} andOUT (v) = {e€ E:e= (v,u)forsomeu € V}.

A flowin G is a functionf : E — R which satisfies the following three conditions:
(i) Non-negativity: for alle € E, f(e) >0
(i) Capacity Constraints: forall € F, f(e) < ¢(e)

(iii) Flow conservation: foralb € V, >/ n (. f(€) = Xccovrw) f€)

Intuitively, the capacity constraints ensure that the flow along a given edge does
not exceed that edge’s capacity, and the matter conservation constraints ensure

that the flow entering a given vertex is equal to the flow exiting it. Sizeof a

flow fis || f|| wf > ecout(s) (€) = Xeern(s) f(e). What s the largest flow

in G?
def

This is a maximization problem. The domainA$G) = {f : fisaflowinG}

and the objective function is the flow size||. AlthoughF(G) is infinite, the
problem is tractable. One of the best-known algorithms — though not the most
efficient — is due to Edmonds and Karf]] it fits into Ford and Fulkerson’s
augmenting pathfamework [?]. The fastest algorithms currently known are of
the push-relabel variety].

An interesting aspect of network flows is thtax flow/Min cutheorem. Acutin

G is a partition of the vertex séf into disjoint setsS andT" such thatSuT =V,

s € Sandt € T. ThecapacityC ofacut(S,T)isC(S,T) = >eers,T) c€)

whereE(S,T) wf {(u,v) € E : u € S,v € T}. Denote the set of all cuts in

GbyC(G) ™ {(S,T): (S,T)is acutinG}. We call f amaximum flovin G

if it has the largest size possible, so thgt| = max{||f’|| : f' € F(G)}, and
(S, T) aminimum cuin G if it has the smallest size possible, so thétS, T') =
min{C(S",T") : (5",T") € C(G)}.

Theorem 1.2. The size of the maximum flowdahis equal to the capacity of the
minimum cut inG.

This is a special case dfinear Programming(LP) duality, a concept we will
explore in greater detail later in the course.

Mathematical Programming

Although the above setting is very general, it is too abstract to be algorithmically inter-
esting. We next considenathematical programming more concrete special case.

Definition 1.3. A mathematical progranconsists of an objective functiofi: R" —
R, a set ofm constraint functions{g; : R — R}™, and aconstant vectob =

..,bm) € R™. The goal is to find ai¥ € D which minimizesf(Z), where the

domainD C R" is defined implicitly by the inequality constrairgg¥) < b;,1 <i <
m, D=2 {Z€R": g;(¥) <b;} = {T €R": g;(7) < b, 1 < i <m}.

We usually write such programs as follows:

min f(Z) subjectto
gi(®) <b; fori=1...m

Since the domain is restricted to be some subsetdimensional Euclidean space, this

a more limited setting. Some problems, like example 2 above for instance, cannot be
cast as mathematical programs. Mathematical programming is still too general for our
purposes, however, since it allows for intractable problems. We prefer to concentrate
on certain special cases involving “nicé’s andg’s, for various notions of “niceness”.

Convex Programming
First, we'll need some definitions.

Definition 1.4. A setS C R is convexif A\ + (1 — A\)y € Sforall Z,5 € S and
A€ 0,1].

Geometrically,S is convex if every line segment joining two points$his contained
inS.

We can view the poinfAZ + (1 — \)Z as a “weighted average” of andy, the
weights being\ and(1 — X), which are non-negative and sum to 1. Such averages are
calledconvex combinationdf S is convex then every convex combination of points in
S also lies inS, so thatS is “closed under taking convex combinations”.

Examples of convex sets:, the unitn-ball {# € R™ : ||Z|, < 1}, any affine
subspace oR™, the first set depicted in Figure 1.

Examples of non-convex setsR” \ {0}, the second set depicted in Figure 1.

Figure 1: A convex set (left) and one that isn’t (right).

Definition 1.5. Let S C R™ be a convex set. A functiofi : S — R is convexif
FOZ+ (1= Ny) < Af(@) + (1 — N f(y) for everyZ, iy € S andX € [0,1]. Notice
thatz = A% + (1 — \)7 € S by convexity ofS, so it makes sense to evalugten Z.

In other wordsf is a convex function if the image undgéof every convex combination

of points inS is bounded above by the convex combination of their images.
Geometricallyf is convex if itsepigraph epi(f) = {(#,y) eR"™:Fe S y>

f(Z)}, is aconvex set. For univariate functions, this means that the line segment joining

any two points on the graph gflies on or above the graph.

Figure 2: A convex function.

Examples of convex functions:linear functions (see below), norms (ditta): for
r € RZ% andk € N, the function depicted in Figure 2.

Examples of functions whicharen't convex: f(z) = \/z,z € R=°.

To verify that,/z is not convex, note that

11 1 1
,/50 + 5100 = V50~ 7.07 > 5 = 5\f0+ §\/100.

Recall that anormis any function||-|| : R™ — R which satisfies the following three
conditions:

@) ||Z|| > 0forall Z e R\ {0}, andf(0) =0

(ii) |le@|| = |e| ||Z]| for all Z € R™ andc € R

(i) |2+]| < ||Z]| + ||g]| for all Z, 5 € R™ (triangle inequality)
Claim 1.6. Norms are convex functions.

Proof. Let f : R™ — R be anorm, € R™ and\ € [0,1] C R. We have:

|AZ + (1= N7l < ||IAZ]] + [|(1 = Nyl (by the triangle inequality)
= I IZ]1 + (1= N 17 (by property (ii) of norms)
= NJZ]| + (1~ NIFl] (sincex,1 - A > 0).

We are now ready to define Convex Programming.

Definition 1.7. A mathematical program
min f(Z) subjectto
g:(Z) <b; fori=1...m

is convexif both the objective functionf : R™ — R and the constraint functions
gi : R" = R, 1 <7 < m are convex.

Here the domain is a convex set, as we will show in a moment. We’ll need the following
two lemmas.

Lemma 1.8. The intersectiors = (., S; of a collection ofm convex set$S, }1",
is itself convex.

Proof. LetZ, 5 € S = (-, S; andX € [0,1]. Sincez = AT+ (1 — \)y € S; for all
1 < i < m (by convexity of the individuab;'s), zZ € (-, S; = S. [|

Lemma 1.9. Letg : R™ — R be a convex function arigle R be a constant. Then the
setS = {Z e R : g(Z¥) < b} C R™ is convex.

Proof. Let Z, ¢ € S andX € [0,1]. We want to show thakZ + (1 — \)§ € S, i.e.
g(AZ + (1 — N)y) < b. We have:

gAE+ (1= N)7) < Ag(@) + (1 — Ng(7) (by convexity ofg)
<max{g(Z),9(y)} (because\+ (1—X)=1)
<b (sinceZ,yeS9).

|
The following theorem is an immediate consequence of lemmas 1.8 and 1.9.

Theorem 1.10. The domairD = (*, D;, D; = {Z € R" : ¢;(¥) < b;} of a convex
program

min f(Z) subjectto
g:(Z) <b; fori=1...m

is a convex set.

Let D be a non-empty subset &* and f : R™ — R be a function. Recall that € D

is alocal minimumof f in D if f(Z) is the smallest value gf in somen-ball contained

in D centered af. More formally, there exists ane R>° such thatf(7) < f(¥) for

all 7 € D which satisfy||7 — ¢]|, < e (where||-||2 denotes the Euclidean norm, see
Example 1.12). Iff(Z) < f(y) for all ¥ € D, thenZ is aglobal minimumof f in D.
Local and global maxima are defined similarly.

One reason general optimization problems are so difficult is that there may be many
local optima, some far from a global optimum. This means that locally optimal deci-
sions do not necessarily result in a solution which is globally optimal, or even close
to one. However, this is not an issue in Convex Programming, as the next theorem
demonstrates.

Theorem 1.11.Let f : R® — R be a convex function. Then every local minimum
Z € Dof finaconvex seD C R™ is a global minimum of in D.

Proof. Let Z € D be an arbitrary point in the domain afde D be a local minimum
of fin D (so thatf (%) < f(¥) for all ¥ € D such thal|Z — ¢]| < ¢, wheree > 0 is
some real constant). Consider any convex combinatien\z + (1 — \)z, A € [0, 1]

of # andZ which is “close” toZ, so that||Z — ¢/|| < e. Sincey € D by convexity ofD
andZz is a local minimum off, we have
@) < f) = fAF+ (1= A)2)
< Af(&) + (1 = N f(2) (by convexity off)

sothat(l1—\)f(Z) < (1—X)f(Z). Sincel — X > 0, this shows thaf () < f(2). N

See Figure 3 for a picture of the proof.

4

Figure 3: A graphical view of Theorem 1.11.

Example 1.12. Recall that the/s or Euclideannorm of & = (z4,...,2,) € R is

|1z, < \/ 2= 22, whereas itg; or Manhattannorm is||Z||, = S0 ;] What

vector? = (x1,r2) € R?in the first quadrant has the smallest Euclidean norm, subject
to the constraint that its Manhattan norm is 1? Siddies in the first quadrant, so that
S, |z = Y23, =, we get the following program:

miny/z? + 23 subjectto
z1 >0

x9 >0

1 t+are =1

However, this program doesn’t quite have the right form, so we split the equality con-
straint and flip the> constraints, obtaining

min /2% + 23 subject to
—r1 <0
—x2 <0
T +a9 <1

—r1 —22 < —1

The objective function is convex since it's a norm (see Claim 1.6), and the constraints
are convex because they're linear (see Definition 1.13).
Linear Programming

Linear Programming is an important special case of Convex Programming which has
been studied extensively over the past sixty years or so.

Definition 1.13. A function f : R™ — R is linear if

() f(@+9) = f(@)+ f(y) and
(i) f(aZ) = af()

forall #, i € R™ anda € R.

Observation 1.14. Every linear functionf : R — R can be expressed as

wherec; = f(€;) andé; is the j'" standard basis vector (which has a 1 in tjé
coordinate and 0’s everywhere else).

Claim 1.15. Linear functions are convex.

Proof. Let f : R™ — R be a linear functiony, ¥ € R™ and € [0, 1]. Then

FOZ+ 1 =Ny = fOD)+ f((1—Ny) (bylinearity property (i)
= M (@) + (1= Nf(@) (by linearity property (ii))

In other words, for linear functions the image of a convex combination of two points in
the domain is actually equal to the convex combination of their images, as opposed to
just being upper-bounded by it.

Definition 1.16. A convex program

min subject to

()
gi(@) <b; fori=1...m

is linear if both the objective functiorf : R™ — R and the constraint functiong :
R™ — R,1 < i < mare linear, and can therefore be expressef{@s = >°7_, c;z;,

g:(Z) = Z;’Zl a;;x; (see Observation 1.14). The program then becomes

n
min Z c;jz; subjectto
j=1

n
Zaijxjgbi fori=1...m
Jj=1

Example 1.17. (the diet problem)A farmer wants his cow to be as skinny as possible
while still keeping her healthy. There anadifferent food types available, thé" food
containingc; € R calories per kilogram] < j < n, anda;; € R milligrams of
vitamin ¢ per kilogram,1 < i < m. The cow requires at leagt € R milligrams of
vitamin i to stay healthy. Given that the goal is to minimize caloric intake while having
enough of each vitamin, how should she be fed?

Letting =; be the number of kilograms of fogdthe cow is fed, we get the following
linear program:

n
min cha:j subject to
j=1

z; >0 forj=1...n

n
Zaijfl?j >b;, fori=1...m

Jj=1

Example 1.18. (network flows redux) Recall the network flows problem from ex-
ample 5. As we already pointed out, fairly efficient specialized algorithms for this
problem are known. However, it can also be attacked using the general methods of
Linear Programming, as we now show.

Letting z. be the flow along edge € F, f(e), we get the following linear program:

max Z Lo — Z z. Subjectto

e€cOUT (s) ec€IN(s)
., >0 forec FE
ze <cle) foree E

Z Ze = Z z. forveV\{st}

ecOUT (v) e€IN(v)

