
CSC2411 - Linear Programming and
Combinatorial Optimization∗

Lecture 1: Introduction to Optimization Problems
and Mathematical Programming

Notes taken by Victor Glazer

January 13, 2005

Summary: Introduction to optimization problems in general and Math-
ematical Programming in particular. Convex sets and functions. Convex
and Linear Programming.

Optimization Problems

Definition 1.1. An optimization problemconsists of a setD, called thedomain, and a
real-valued functionf : D → R, called theobjective function. f(x) ∈ R represents
the “profit” or “cost” associated withx ∈ D.

Optimization problems come in two flavours: minimization problems and maximiza-
tion problems. In amaximization problem, the goal is to find anx ∈ D such that
f(y) ≤ f(x) for all y ∈ D. In other words, we want a domain element which yields
the greatest profit. In aminimization problem, on the other hand, the goal is to find an
x ∈ D such thatf(x) ≤ f(y) for all y ∈ D. In this case we want a domain element
which has the smallest cost.

In general,f may fail to have an optimum inD. However, ifD is finite then every
f has both a minimum and a maximum inD.

Let’s look at a few examples.

1. Letp be a univariate polynomial. Where doesp attain its maximum value, if we
restrict it to the closed interval[0, 1] ⊂ R?

This is a maximization problem. The domain isD = [0, 1] and the objective
functionf is simplyp itself.

∗ Lecture Notes for a course given by Avner Magen, Dept. of Computer Sciecne, University of Toronto.

1

2. What is the largest area enclosed by a two-dimensional (closed) curve of length
one?

This is a maximization problem. The domainD consists of all closed two-
dimensional curves of unit length, and the objective functionf maps a two-
dimensional curve to the area enclosed by it.

3. Recall the classical Minimum Spanning Tree (MST) problem. Suppose that we
are given an undirected graphG = (V,E) and a weight functionw : E → R.
The weightW of a subgraphG′ of G with edge setE′ ⊆ E is just the sum of

the individual weights of its edges,W (G′)
def
=
∑
e∈E′ w(e). A path in G is

a sequence of verticesv1, . . . , vn ∈ V , n ≤ |V | such that(vi, vi+1) ∈ E for
1 ≤ i ≤ n − 1. A cycle is a closed path, so thatv1 = vn. G is connectedif
there is a path between everyu, v ∈ V, u 6= v, andacyclic if it doesn’t contain
any cycles. Aspanning treeT of G is a connected acyclic subgraph ofG with
vertex setV . What is the least-weight spanning tree ofG?

This is a minimization problem. The domain isT (G)
def
= {T : T is a spanning

tree ofG}, and the objective function is the sum of the edge weights,W . No-
tice that here the domain is finite, unlike in the previous two examples, since
|T (G)| ≤ 2|E|. This problem istractable, meaning that there are polynomial-
time algorithms for it (where bypolynomial timewe meandeterministicpolyno-
mial time in the worst case). The two best-known ones are due to Prim [?] and
Kruskal [?], whereas Chazelle’s [?] is currently the fastest.

4. Another classical optimization problem is the Travelling Salesman Problem (TSP).
We are given an undirected graphG = (V,E), whose vertices represent cities,
and a pairwise distance functiond : E → R; d(u, v) is the distance between
cities u, v ∈ V . A Hamiltonian cyclein G is a cycle in which everyv ∈ V
appears exactly once. ThelengthL of a cycleC = v1, . . . , vn is the sum of the

distances between adjacent vertices,L(C)
def
=
∑n−1
i=1 d(vi, vi+1) + d(vn, v1).

What is the shortest Hamiltonian cycle inG?

This is a minimization problem. The domain isH(G)
def
= {H : H is a

Hamiltonian cycle inG} and the objective function is the cycle lengthL. As
with the MST problem, the domain here is finite. Unlike the MST problem,
however, TSP isintractable, since it is NP-hard (and therefore does not have a
polynomial-time algorithm unlessP = NP).

5. A flow networkis a directed graphG = (V,E) together with acapacity func-
tion c : E → R

≥0 and two distinguished verticess, t ∈ V ; s is called the

sourceandt is called thesink. For everyv ∈ V , let IN(v)
def
= {e ∈ E : e =

(u, v) for someu ∈ V } andOUT (v)
def
= {e ∈ E : e = (v, u) for someu ∈ V }.

2

A flow in G is a functionf : E → R which satisfies the following three conditions:

(i) Non-negativity: for alle ∈ E, f(e) ≥ 0

(ii) Capacity Constraints: for alle ∈ E, f(e) ≤ c(e)

(iii) Flow conservation: for allv ∈ V ,
∑
e∈IN(v) f(e) =

∑
e∈OUT (v) f(e)

Intuitively, the capacity constraints ensure that the flow along a given edge does
not exceed that edge’s capacity, and the matter conservation constraints ensure
that the flow entering a given vertex is equal to the flow exiting it. Thesizeof a

flow f is ||f || def=
∑
e∈OUT (s) f(e) −

∑
e∈IN(s) f(e). What is the largest flow

in G?

This is a maximization problem. The domain isF(G)
def
= {f : f is a flow inG}

and the objective function is the flow size|| · ||. AlthoughF(G) is infinite, the
problem is tractable. One of the best-known algorithms — though not the most
efficient — is due to Edmonds and Karp [?]; it fits into Ford and Fulkerson’s
augmenting pathsframework [?]. The fastest algorithms currently known are of
the push-relabel variety [?].

An interesting aspect of network flows is theMax flow/Min cuttheorem. Acut in
G is a partition of the vertex setV into disjoint setsS andT such thatS∪T = V ,

s ∈ S andt ∈ T . ThecapacityC of a cut(S, T) isC(S, T)
def
=
∑
e∈E(S,T) c(e),

whereE(S, T)
def
= {(u, v) ∈ E : u ∈ S, v ∈ T}. Denote the set of all cuts in

G by C(G)
def
= {(S, T) : (S, T) is a cut inG}. We callf a maximum flowin G

if it has the largest size possible, so that||f || = max{||f ′|| : f ′ ∈ F(G)}, and
(S, T) aminimum cutin G if it has the smallest size possible, so thatC(S, T) =
min{C(S′, T ′) : (S′, T ′) ∈ C(G)}.

Theorem 1.2. The size of the maximum flow inG is equal to the capacity of the
minimum cut inG.

This is a special case ofLinear Programming(LP) duality, a concept we will
explore in greater detail later in the course.

Mathematical Programming

Although the above setting is very general, it is too abstract to be algorithmically inter-
esting. We next considermathematical programming, a more concrete special case.

Definition 1.3. A mathematical programconsists of an objective functionf : Rn →
R, a set ofm constraint functions{gi : Rn → R}mi=1 and aconstant vector~b =
(b1, . . . , bm) ∈ Rm. The goal is to find an~x ∈ D which minimizesf(~x), where the
domainD ⊆ Rn is defined implicitly by the inequality constraintsgi(~x) ≤ bi, 1 ≤ i ≤
m,D =

⋂m
i=1{~x ∈ Rn : gi(~x) ≤ bi} = {~x ∈ Rn : gi(~x) ≤ bi, 1 ≤ i ≤ m}.

3

We usually write such programs as follows:

min f(~x) subject to

gi(~x) ≤ bi for i = 1 . . .m

Since the domain is restricted to be some subset ofn-dimensional Euclidean space, this
a more limited setting. Some problems, like example 2 above for instance, cannot be
cast as mathematical programs. Mathematical programming is still too general for our
purposes, however, since it allows for intractable problems. We prefer to concentrate
on certain special cases involving “nice”f ’s andg’s, for various notions of “niceness”.

Convex Programming

First, we’ll need some definitions.

Definition 1.4. A setS ⊆ Rn is convexif λ~x + (1 − λ)~y ∈ S for all ~x, ~y ∈ S and
λ ∈ [0, 1].

Geometrically,S is convex if every line segment joining two points inS is contained
in S.

We can view the pointλ~x + (1 − λ)~x as a “weighted average” of~x and~y, the
weights beingλ and(1− λ), which are non-negative and sum to 1. Such averages are
calledconvex combinations. If S is convex then every convex combination of points in
S also lies inS, so thatS is “closed under taking convex combinations”.

Examples of convex sets:∅, the unitn-ball {~x ∈ Rn : ‖~x‖2 ≤ 1}, any affine
subspace ofRn, the first set depicted in Figure 1.

Examples of non-convex sets:Rn \ {~0}, the second set depicted in Figure 1.

Figure 1: A convex set (left) and one that isn’t (right).

Definition 1.5. Let S ⊆ R
n be a convex set. A functionf : S → R is convexif

f(λ~x + (1 − λ)~y) ≤ λf(~x) + (1 − λ)f(~y) for every~x, ~y ∈ S andλ ∈ [0, 1]. Notice
that~z = λ~x+ (1− λ)~y ∈ S by convexity ofS, so it makes sense to evaluatef on~z.

In other words,f is a convex function if the image underf of every convex combination
of points inS is bounded above by the convex combination of their images.

Geometrically,f is convex if itsepigraph, epi(f)
def
= {(~x, y) ∈ Rn+1 : ~x ∈ S, y ≥

f(~x)}, is a convex set. For univariate functions, this means that the line segment joining
any two points on the graph off lies on or above the graph.

4

Figure 2: A convex function.

Examples of convex functions: linear functions (see below), norms (ditto),xk for
x ∈ R≥0 andk ∈ N, the function depicted in Figure 2.

Examples of functions whicharen’t convex:f(x) =
√
x, x ∈ R≥0.

To verify that
√
x is not convex, note that√

1
2

0 +
1
2

100 =
√

50 ≈ 7.07 > 5 =
1
2

√
0 +

1
2

√
100.

Recall that anorm is any function|| · || : Rn → R which satisfies the following three
conditions:

(i) ||~x|| > 0 for all ~x ∈ Rn \ {~0}, andf(~0) = 0

(ii) ||c~x|| = |c| ||~x|| for all ~x ∈ Rn andc ∈ R

(iii) ||~x+ ~y|| ≤ ||~x||+ ||~y|| for all ~x, ~y ∈ Rn (triangle inequality)

Claim 1.6. Norms are convex functions.

Proof. Let f : Rn → R be a norm,~x, ~y ∈ Rn andλ ∈ [0, 1] ⊆ R. We have:

||λ~x+ (1− λ)~y|| ≤ ||λ~x||+ ||(1− λ)~y|| (by the triangle inequality)

= |λ| ||~x||+ |(1− λ)| ||~y|| (by property (ii) of norms)

= λ||~x||+ (1− λ)||~y|| (sinceλ, 1− λ ≥ 0).

�

We are now ready to define Convex Programming.

Definition 1.7. A mathematical program

min f(~x) subject to

gi(~x) ≤ bi for i = 1 . . .m

is convexif both the objective functionf : Rn → R and the constraint functions
gi : Rn → R, 1 ≤ i ≤ m are convex.

5

Here the domain is a convex set, as we will show in a moment. We’ll need the following
two lemmas.

Lemma 1.8. The intersectionS =
⋂m
i=1 Si of a collection ofm convex sets{Si}mi=1

is itself convex.

Proof. Let ~x, ~y ∈ S =
⋂m
i=1 Si andλ ∈ [0, 1]. Since~z = λ~x + (1− λ)~y ∈ Si for all

1 ≤ i ≤ m (by convexity of the individualSi’s), ~z ∈
⋂m
i=1 Si = S. �

Lemma 1.9. Letg : Rn → R be a convex function andb ∈ R be a constant. Then the
setS = {~x ∈ Rn : g(~x) ≤ b} ⊆ Rn is convex.

Proof. Let ~x, ~y ∈ S andλ ∈ [0, 1]. We want to show thatλ~x + (1 − λ)~y ∈ S, i.e.
g(λ~x+ (1− λ)~y) ≤ b. We have:

g(λ~x+ (1− λ)~y) ≤ λg(~x) + (1− λ)g(~y) (by convexity ofg)
≤ max{g(~x), g(~y)} (becauseλ+ (1− λ) = 1)
≤ b (since~x, ~y ∈ S).

�

The following theorem is an immediate consequence of lemmas 1.8 and 1.9.

Theorem 1.10. The domainD =
⋂m
i=1Di,Di = {~x ∈ Rn : gi(~x) ≤ bi} of a convex

program

min f(~x) subject to

gi(~x) ≤ bi for i = 1 . . .m

is a convex set.

LetD be a non-empty subset ofRn andf : Rn → R be a function. Recall that~x ∈ D
is alocal minimumof f inD if f(~x) is the smallest value off in somen-ball contained
in D centered at~x. More formally, there exists anε ∈ R>0 such thatf(~x) ≤ f(~y) for
all ~y ∈ D which satisfy‖~x − ~y‖2 ≤ ε (where|| · ||2 denotes the Euclidean norm, see
Example 1.12). Iff(~x) ≤ f(~y) for all ~y ∈ D, then~x is aglobal minimumof f in D.
Local and global maxima are defined similarly.

One reason general optimization problems are so difficult is that there may be many
local optima, some far from a global optimum. This means that locally optimal deci-
sions do not necessarily result in a solution which is globally optimal, or even close
to one. However, this is not an issue in Convex Programming, as the next theorem
demonstrates.

Theorem 1.11. Let f : Rn → R be a convex function. Then every local minimum
~x ∈ D of f in a convex setD ⊆ Rn is a global minimum off in D.

Proof. Let ~z ∈ D be an arbitrary point in the domain and~x ∈ D be a local minimum
of f in D (so thatf(~x) ≤ f(~y) for all ~y ∈ D such that||~x − ~y|| ≤ ε, whereε > 0 is
some real constant). Consider any convex combination~y = λ~x+ (1− λ)~z, λ ∈ [0, 1]

6

of ~x and~z which is “close” to~x, so that||~x− ~y|| ≤ ε. Since~y ∈ D by convexity ofD
and~x is a local minimum off , we have

f(~x) ≤ f(~y) = f(λ~x+ (1− λ)~z)
≤ λf(~x) + (1− λ)f(~z) (by convexity off)

so that(1−λ)f(~x) ≤ (1−λ)f(~z). Since1−λ ≥ 0, this shows thatf(~x) ≤ f(~z). �

See Figure 3 for a picture of the proof.

x

y

z

e

Figure 3: A graphical view of Theorem 1.11.

Example 1.12. Recall that thè 2 or Euclideannorm of ~x = (x1, . . . , xn) ∈ Rn is

‖~x‖2
def
=
√∑n

j=1 x
2
j , whereas its̀1 or Manhattannorm is‖~x‖1

def
=
∑n
j=1 |xj |. What

vector~x = (x1, x2) ∈ R2 in the first quadrant has the smallest Euclidean norm, subject
to the constraint that its Manhattan norm is 1? Since~x lies in the first quadrant, so that∑2
j=1 |xj | =

∑2
j=1 xj , we get the following program:

min
√
x2

1 + x2
2 subject to

x1 ≥ 0
x2 ≥ 0

x1 + x2 = 1

However, this program doesn’t quite have the right form, so we split the equality con-
straint and flip the≥ constraints, obtaining

min
√
x2

1 + x2
2 subject to

−x1 ≤ 0
−x2 ≤ 0

x1 + x2 ≤ 1
−x1 − x2 ≤ −1

7

The objective function is convex since it’s a norm (see Claim 1.6), and the constraints
are convex because they’re linear (see Definition 1.13).

Linear Programming

Linear Programming is an important special case of Convex Programming which has
been studied extensively over the past sixty years or so.

Definition 1.13. A functionf : Rn → R is linear if

(i) f(~x+ ~y) = f(~x) + f(~y) and

(ii) f(α~x) = αf(~x)

for all ~x, ~y ∈ Rn andα ∈ R.

Observation 1.14. Every linear functionf : Rn → R can be expressed as

f(~x) = 〈~c, ~x〉 =
n∑
j=1

cjxj ,

wherecj = f(~ej) and~ej is thejth standard basis vector (which has a 1 in thejth

coordinate and 0’s everywhere else).

Claim 1.15. Linear functions are convex.

Proof. Let f : Rn → R be a linear function,~x, ~y ∈ Rn andλ ∈ [0, 1]. Then

f(λ~x+ (1− λ)~y) = f(λ~x) + f((1− λ)~y) (by linearity property (i))

= λf(~x) + (1− λ)f(~y) (by linearity property (ii))

≤ λf(~x) + (1− λ)f(~y),

�

In other words, for linear functions the image of a convex combination of two points in
the domain is actually equal to the convex combination of their images, as opposed to
just being upper-bounded by it.

Definition 1.16. A convex program

min f(~x) subject to

gi(~x) ≤ bi for i = 1 . . .m

is linear if both the objective functionf : Rn → R and the constraint functionsgi :
R
n → R, 1 ≤ i ≤ m are linear, and can therefore be expressed asf(~x) =

∑n
j=1 cjxj ,

8

gi(~x) =
∑n
j=1 aijxj (see Observation 1.14). The program then becomes

min
n∑
j=1

cjxj subject to

n∑
j=1

aijxj ≤ bi for i = 1 . . .m

Example 1.17. (the diet problem)A farmer wants his cow to be as skinny as possible
while still keeping her healthy. There aren different food types available, thejth food
containingcj ∈ R calories per kilogram,1 ≤ j ≤ n, andaij ∈ R milligrams of
vitamin i per kilogram,1 ≤ i ≤ m. The cow requires at leastbi ∈ R milligrams of
vitamin i to stay healthy. Given that the goal is to minimize caloric intake while having
enough of each vitamin, how should she be fed?

Letting xj be the number of kilograms of foodj the cow is fed, we get the following
linear program:

min
n∑
j=1

cjxj subject to

xj ≥ 0 for j = 1 . . . n
n∑
j=1

aijxj ≥ bi for i = 1 . . .m

Example 1.18. (network flows redux) Recall the network flows problem from ex-
ample 5. As we already pointed out, fairly efficient specialized algorithms for this
problem are known. However, it can also be attacked using the general methods of
Linear Programming, as we now show.

Lettingxe be the flow along edgee ∈ E, f(e), we get the following linear program:

max
∑

e∈OUT (s)

xe −
∑

e∈IN(s)

xe subject to

xe ≥ 0 for e ∈ E
xe ≤ c(e) for e ∈ E∑

e∈OUT (v)

xe =
∑

e∈IN(v)

xe for v ∈ V \ {s, t}

9

