
CSC2402 - Fall 2009
Assignment 4

due on Wednesday, Dec 16th, at 2pm

Problem 1 [15pt] The purpose of this problem is to establish a few facts that you might
find useful in other problems. Even if you can not prove one of the following parts you
can still use them in other questions.

1. [5pt] Prove that for any n ≥ 2 unit vectors v1, . . . ,vn ∈ Rn the following is true:

max
i 6=j

vi · vj ≥ −1/(n− 1).

2. [5pt] Prove that for any n the above bound is tight. In other words there are vectors
v1, . . . ,vn such that any two of them have inner product at most −1/(n− 1).

3. [5pt] Consider a symmetric (n+ 1)× (n+ 1) matrix A of the following form,

A =


γ b1 b2 · · · bn
b1
b2
...
bn

X

 ,

where X is a symmetric n× n matrix and γ > 0 is a positive real. Prove that A is
positive semidefinite if and only if X − 1

γ bb
t is positive semidefinite. Here bbt, the

outer product of b with itself, is defined as

(bbt)ij = bibj .

Problem 2 [50pt] Remember that in the Maximum Independent Set problem we are given
a graph G and we are interested in the largest set of vertices that has no edges inside it.
The following question concerns the canonical SDP relaxation of this problem seen below.

max
∑

i v0 · vi
subject to v0,v1, . . . ,vn ∈ Rn+1,

||v0||22 = 1,
∀i v0 · vi = vi · vi,

∀ij ∈ E(G) vi · vj = 0.

We are going to show that the integrality gap of this relaxation is at least Ω(
√
n/ log n).

(It takes much more effort but it can be shown that the integrality gap is actually close
to n.)
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1. [5pt] Prove that the above SDP is a relaxation of the problem. In other words, show
that for any subset of the vetices S, there is a set vectors that satisfy the above
conditions if and only if S is an independent set, and has objective value |S|.

2. [8pt] Remember that the standad LP relaxation of Maximum Indepednent Set has
a very big integrality gap when G = Kn.

Show that the SDP relaxation has no integrality gap for Kn, namely the objective
value is 1 for this graph. (You may want to use the result of question 1.)

3. [10pt] Consider the random graph G(n, 1/2) which is the graph on n vertices where
every possible edge occurs independently with probability 1/2. Show that with
probability 1− o(1), the size of the biggest independent set of G(n, 1/2) is less than
3 log n.

Hint: What is the probability that a subset of the vertices S ⊆ V (G) of size 3 log n
is an indepedent set?

4. (bonus) Show that with probability 1 − o(1) the objective value of the SDP above
on G(n, 1/2) is at least c

√
n for some constant c > 0.

Hint: You have to construct a solution to the above SDP with high objective value.
Instead of constructing a vector solution, try constructing a matrix (of the inner
product) and showing that it is PSD.

5. [5pt] Consider the following Semidefinite program,

min ||u0||22
subject to u0,u1, . . . ,un ∈ Rn+1,

∀i 2u0 · ui + ui · ui = −1,
∀i < j, ij 6∈ E(G) ui · uj = 0.

Show that the optimum of this program is always more than or equal to the optimum
of the SDP relaxation of Independent Set we saw above. (as a side note, this is a
special case of weak duality for Semidefinite Programming.)

Hint: The following simple fact may be useful: for vectors a1, . . . ,an ∈ Rn and
b1, . . . ,bn ∈ Rn the following holds,∑

ij

(ai · aj)(bi · bj) ≥ 0.

6. (bonus) Show that for G(n, 1/2) with probability 1− o(1) the objective value of the
SDP is at most C

√
n for some constant C.

For the bonus parts (4 and 6) you would most probably want to use the following
theorem (for a proof see Z. Furedi and J. Komlos, “The eigenvalues of random symmetric
matrices”, Combinatorica 1 (1981)). Fix constants ν, σ, and µ and consider a random
symmetric n by n matrix A = (aij) where the (upper triangular) entries are chosen
independently according to some distribution,1

1Technically, the theorem also requires that these distributions are bounded but this is not important
for this question.
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• A is symmetric, that is aij is always equal to aji,

• For i 6= j, E [aij ] = µ and aij has variance σ2,

• For any i, E [aii] = ν.

Then with probability 1− o(1), all the eigenvalues of A are at least −3σ
√
n.

Problem 3 [15pt] Remember the KMS algorithm for coloring a 3-colorable graph with
maximum degree ∆ from class. Remember the algorithm used ∆log3 2 colors to color such
graphs. Change the algorithm slightly so that it can color k-colorable graphs. What is
the number of colors the algorithm will use?

Hint: The algorithm will actually work and will use less colors than the trivial greedy
algorithm, however the number of colors used is not a particularly pretty expression.

Problem 4 [20pt] Consider the IP for vertex cover problem that was discussed in class.
In class we saw that the “odd-cycle constraints” which say that

∑
i∈C xi ≥ d|C|/2e where

C is an odd cycle of G, are valid constrains, and that they (and only they) are implied by
one application of the LS lift and project method. It is therefore possible to optimize over
the LP that contains the odd cycle constraints. Our goal now is to supply an independent
proof to that.

1. Let G be a graph with weights (not necessarily positive) wv on vertices, but with
no cycle of negative weight. (The weight of a cycle is the sum of the weights of its
vertices.) Show a polynomial time algorithm to find (one of) the lightest odd-cycle
in G, that is an odd cycle that minimizes

∑
v∈C wv over all odd cycles in G.

Hint: Consider the following construction of a bipartite graph H with 2n vertices.
For every vertex v ∈ V (G) H has two vertices v′ and v′′. For every edge uv in G we
create two edges in H: u′v′′ and u′′v′; the weights of these edges are the same as the
weight of the edge uv in G.

2. Provide a polynomail time algorithm to solve the LP relaxation that contains the
odd cycle constrants.
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