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Abstract

This work considers the problem of approximating fixed predicate constraint satisfaction
problems (MAX k-CSP(P )). We show that if the set of assignments accepted by P contains
the support of a balanced pairwise independent distribution over the domain of the inputs,
then such a problem on n variables cannot be approximated better than the trivial (random)
approximation, even using Ω(n) levels of the Sherali-Adams LP hierarchy.

It was recently shown [3] that under the Unique Game Conjecture, CSPs for predicates
satisfying this condition cannot be approximated better than the trivial approximation. Our
results can be viewed as an unconditional analogue of this result in the restricted computational
model defined by the Sherali-Adams hierarchy. We also introduce a new generalization of
techniques to define consistent “local distributions” over partial assignments to variables in
the problem, which is often the crux of proving lower bounds for such hierarchies.
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1 Introduction

A constraint satisfaction problem (CSP) consists of a set of constraints that seek a universal solution.
In the maximization version (MAX-CSP) one tries to maximize the number of constraints that can
be simultaneously satisfied. The most standard family of CSPs arise from Boolean predicates P with
bounded support k. In their generality, the predicates are defined over an alphabet {0, 1, . . . , q−1} =
[q] and they can be thought as functions P : [q]k → {0, 1}. A constraint is defined by the predicate
P applied to a k-tuple of literals (x1 + b1 mod q, . . . , xk + bk mod q), where bi ∈ [q], and is said
to be satisfied by some assignment on (x1, . . . , xk) if the predicate evaluates to 1. Given some
predicate P , an instance of the MAX k-CSP(P ) problem is a collection of constraints as above and
the objective is to maximize the number of constraints that can be satisfied simultaneously. As a
special case, we can obtain all well studied MAX-CSP problems, e.g. MAX k-SAT, MAX-CUT etc.
When the predicate to be used in different constraints is not fixed we simply refer to the problem
as MAX k-CSP.

The MAX k-CSP problem is NP-hard for k ≥ 2, and a lot of effort has been devoted in deter-
mining the true inapproximability of the problem. In general, the inapproximability of the MAX
k-CSP depends on the size of alphabet over which literals are valued. For the case of Boolean
variables, Samorodnitsky and Trevisan [20] proved that the problem is hard to approximate better
than a factor of 22

√
k/2k, which was improved to 2

√
2k/2k by Engebresten and Holmerin [9]. Later

Samorodnitsky and Trevisan [21] showed that it is Unique-Games-hard to approximate the same
problem with factor better than 2dlog k+1e/2k. For the more general case of q-ary variables (MAX
k-CSPq), Guruswami and Raghavendra [13] showed a hardness ratio of q2k/qk when q is a prime.

In a very general result which captures all the above ones, Austrin and Mossel [3] showed that if
P : [q]k → {0, 1} is a predicate such that the set of accepted inputs P−1(1) contains the support
of a balanced pairwise independent distribution µ on [q]k, then MAX k-CSP(P ) is UG-hard to
approximate better than a factor of |P−1(1)|/qk. Considering that a random assignment satisfies
|P−1(1)|/qk fraction of all the constraints, this is the strongest result one can get for a predicate P .
Using appropriate choices for the predicate P , this then implies hardness ratios of kq2(1 + o(1))/qk

for general q ≥ 2, q(q − 1)k/qk when q is a prime power, and (k +O(k0.525)/2k for q = 2.

We study the inapproximability of such a predicate P (which we call promising) in the hierarchy of
linear programs defined by Sherali and Adams. In particular, we show an unconditional analogue
of the result of Austrin and Mossel in this hierarchy.

Hierarchies of Linear and Semidefinite Programs

A standard approach in approximating NP -hard problems, and therefore MAX k-CSP, is to for-
mulate the problem as a 0-1 integer program and then relax the integrality condition to get a
linear (or semidefinite) program which can be solved efficiently. The quality of such an approach is
intimately related to the integrality gap of the relaxation, namely, the ratio between the optimum
of the relaxation and that of the integer program.

Several methods (or procedures) were developed in order to obtain tightenings of relaxations in
a systematic manner. These procedures give a sequence or a hierarchy of increasingly tighter
relaxations of the starting program. The commonly studied ones include the hierarchies defined by
Lovász-Schrijver [16], Sherali-Adams [25], and Lasserre [14] (see [15] for a comparison). Stronger
relaxations in the sequence are referred to as higher levels of the hierarchy. It is known for all these
hierarchies that for a starting program with n variables, the program at level n has integrality gap
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1, and that it is possible to optimize over the program at the rth level in time nO(r).

Many known linear (semidefinite) programs can be captured by constant many levels of the Sherali-
Adams (Lasserre) hierarchy. Fernández de la Vega and Kenyon-Mathieu [11] have provided a
PTAS for Max Cut in dense graphs using Sherali-Adams. In [17] it is shown how to get a Sherali-
Adams based PTAS for Vertex-Cover and Max-Independent-Set in minor-free graphs, while recently
Mathieu and Sinclair [18] showed that the integrality gap for the matching polytope is asymp-
totically 1 + 1/r, and Bateni, Charikar and Guruswami [4] that the integrality gap for a natural
LP formulation of the MaxMin allocation problem has integrality gap at most n1/r, both after r
many Sherali-Adams tightenings. Chlamtac [7] and Chlamtac and Singh [8] gave an approxima-
tion algorithm for Max-Independent-Set in hypergraphs based on the Lasserre hierarchy, with the
performance depending on the number of levels.

Lower bounds in these hierarchies amount to showing that the integrality gap remains large even
after many levels of the hierarchy. Integrality gaps for Ω(n) levels can be seen as unconditional
lower bounds (as they rule out even exponential time algorithms obtained by the hierarchy) in a
restricted (but still fairly interesting) model of computation. Considerable effort was invested in
proving lower bounds (see [2, 27, 26, 24, 5, 10, 1, 23, 12, 11]). For CSPs in particular, strong lower
bounds (Ω(n) levels) were proved recently for the Lasserre hierarchy (which is the strongest) by
[22] and [28], who showed a factor 2 integrality gap for MAX k-XOR and factor 2k/2k integrality
gap for MAX k-CSP respectively.

In a beautiful result, Raghavendra [19] showed a general connection between integrality gaps and
UG-hardness results. His result shows that for MAX k-CSP(P ), the integrality gap of a program
obtained by combining 1 level of the Lasserre hierarchy with k levels of the Sherali-Adams hierarchy
is I, then the MAX k-CSP(P ) is UG-hard to approximate better than a factor of I. However, in
our case the hardness is already known (by the work of Austrin and Mossel), and we are interested
in finding an integrality gap.

Our Result and Techniques

Both the results in the Lasserre hierarchy (and previous analogues in the Lovász-Schrijver hierarchy)
seemed to be heavily relying on the structure of the predicate for which the integrality gap was
proven, as being some system of linear equations. It was not clear if the techniques could be
extended using only the fact that the predicate is promising (which is a much weaker condition).
In this paper, we try to explore this issue, proving Ω(n) level gaps for the (admittedly weaker)
Sherali-Adams hierarchy.

Theorem 1.1 Let P : [q]k → {0, 1} be predicate such that P−1(1) contains the support of a balanced
pairwise independent distribution µ. Then for every constant ζ > 0, there exist c = c(q, k, ζ) such
that for large enough n, the integrality gap of MAX k-CSP(P ) for the tightening obtained by cn

levels of the Sherali-Adams hierarchy applied to the standard LP1is at least
qk

|P−1(1)|
− ζ.

We note that Ω(nδ)-level gaps for these predicates can also be deduced via reductions from the
recent result of [6] who obtained Ω(nδ)-level gaps for Unique Games, where δ → 0 as ζ → 0.

A first step in achieving our result is to reduce the problem of a level-t gap to a question about
family of distributions over assignments associated with sets of variables of size at most t. These

1See the resulting LP in section 2.3.
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distributions should be (a) supported only on satisfying (partial) assignments and (b) should be
consistent among themselves, in the sense that for S1 ⊆ S2 which are subsets of variables, the
distributions over S1 and S2 should be equal on S1. The second requirement guarantees that the
obtained solution is indeed feasible, while the first implies that the solution achieves objective value
that corresponds to satisfying all the constraints of the instance.

The second step is to come up with these distributions! We explain why the simple method
of picking a uniform distribution (or a reweighting of it according to the pairwise independent
distribution that is supported by P ) over the satisfying assignments cannot work. Instead we
introduce the notion of “advice sets”. These are sets on which it is “safe” to define such simple
distributions. The actual distribution for a set S we use is then the one induced on S by a simple
distribution defined on the advice-set of S. Getting such advice sets heavily relies on notions
of expansion of the constraints graph. In doing so, we use the fact that random instances have
inherently good expansion properties. At the same time, such instances are highly unsatisfiable,
ensuring that the resulting integrality gap is large.

Arguing that it is indeed “safe” to use simple distributions over the advice sets relies on the fact
that the predicate P in question is promising, namely P−1(1) contains the support of a balanced
pairwise independent distribution. We find it interesting and somewhat curious that the condition
of pairwise independence comes up in this context for a reason very different than in the case of
UG-hardness. Here, it represents the limit to which the expansion properties of a random CSP
instance can be pushed to define such distributions.

2 Preliminaries and Notation

2.1 Constraint Satisfaction Problems

For an instance Φ of MAX k-CSPq, we denote the variables by {x1, . . . , xn}, their domain {0, . . . , q−
1} by [q] and the constraints by C1, . . . , Cm. Each constraint is a function of the form Ci : [q]Ti →
{0, 1} depending only on the values of the variables in the ordered tuple Ti with |Ti| ≤ k.

For a set of variables S ⊆ [n], we denote by [q]S the set of all mappings from the set S to [q]. In
context of variables, these mappings can be understood as partial assignments to a given subset of
variables. For α ∈ [q]S , we denote its projection to S′ ⊆ S as α(S′). Also, for α1 ∈ [q]S1 , α2 ∈ [q]S2

such that S1 ∩ S2 = ∅, we denote by α1 ◦ α2 the assignment over S1 ∪ S2 defined by α1 and α2.

We shall prove results for constraint satisfaction problems where every constraint is specified by the
same Boolean predicate P : [q]k → {0, 1}. We denote the set of assignments which the predicate
evaluates to 1 by P−1(1). A CSP instance for such a problem is a collection of constraints of the
form of P applied to k-tuples of literals. For a variable x with domain [q], we take a literal to be
(x+ a) mod q for any a ∈ [q]. More formally,

Definition 2.1 For a given P : [q]k → {0, 1}, an instance Φ of MAX k-CSPq(P ) is a set of
constraints C1, . . . , Cm where each constraint Ci is over a k-tuple of variables Ti = {xi1 , . . . , xik}
and is of the form P (xi1 + ai1 , . . . , xik + aik) for some ai1 , . . . , aik ∈ [q]. We denote the maximum
number of constraints that can be simultaneously satisfied by OPT(Φ).
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2.2 Expanding CSP Instances

For an instance Φ of MAX k-CSPq, define its constraint graph GΦ, as the following bipartite graph
from L to R. The left hand side L consists of a vertex for each constraint Ci. The right hand side
R consists of a vertex for every variable xj . There is an edge between a constraint-vertex i and a
variable-vertex j, whenever variable xj appears in constraint Ci. When it is clear from the context,
we will abbreviate GΦ by G.

For Ci ∈ L we denote by Γ(Ci) ⊆ R the neighbors Γ(Ci) of Ci in R. For a set of constraints C ⊆ L,
Γ(C) denotes ∪ci∈CΓ(Ci). For S ⊆ R, we call a constraint Ci ∈ L, S-dominated if Γ(Ci) ⊆ S. We
denote by G|−S the bipartite subgraph of G that we get after removing S and all S-dominated
constraints. Finally, we also denote by C(S) the set of all S-dominated constraints.

Our result relies on set of constraints that are well expanding. We make this notion formal below.

Definition 2.2 Consider a bipartite graph G = (V,E) with partition L,R. The boundary expansion
of X ⊂ L is the value |∂X|/|X|, where ∂X = {u ∈ R : |Γ(u) ∩ X| = 1}. G is (r, e) boundary
expanding if the boundary expansion for all subsets of L of size at most r is at least e.

2.3 The Sherali-Adams Hierarchy

Below we present a relaxation for the MAX k-CSPq problem as it is obtained by applying a level-t
Sherali-Adams tightening of the standard LP formulation of some instance Φ of MAX k-CSPq. A
well known fact states that the level-n Sherali-Adams tightening provides a perfect formulation,
i.e. the integrality gap is 1 (see [25] or [15] for a proof).

The intuition behind the level-t Sherali-Adams tightening is the following. Note that an integer
solution to the problem can be given by a single mapping α0 ∈ [q][n], which is an assignment to all
the variables. Using this, we can define 0/1 variables X(S,α) for each S ⊆ [n] such that |S| ≤ t and
α ∈ [q]S . The intended solution is X(S,α) = 1 if α0(S) = α and 0 otherwise. We introduce X(∅,∅)
which is intended to be 1. By relaxing the integrality constraint on the variables, we obtain the
level-t Sherali-Adams LP tightening.

Level-t (for t ≥ k) Sherali-Adams LP tightening for a MAX k-CSPq instance Φ

maximize
m∑
i=1

∑
α∈[q]Ti

Ci(α)·X(Ti,α)

subject to
∑
j∈[q]

X(S∪{i},α◦j) = X(S,α) ∀S s.t. |S| < t, ∀i /∈ S, α ∈ [q]S

X(S,α) ≥ 0 ∀S s.t. |S| ≤ t, ∀α ∈ [q]S

X(∅,∅) = 1

For an LP formulation of MAX k-CSPq, and for a given instance Φ of the problem, we denote by
FRAC(Φ) the LP (fractional) optimum, and by OPT(Φ) the integral optimum. For the particular
instance Φ, the integrality gap is then defined as FRAC(Φ)/OPT(Φ). The integrality gap of the LP
formulation is the supremum of integrality gaps over all instances.

Next we give a sufficient condition for the existence of a solution to the level-t Sherali-Adams LP
tightening for a MAX k-CSPq instance Φ.
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Lemma 2.3 Consider a family of distributions {D(S)}S⊆[n]:|S|≤t, where each D(S) is defined over
[q]S. If for every S ⊆ T ⊆ [n] with |T | ≤ t, the distributions D(S),D(T ) are equal on S, then

X(S,α) = PrD(S)[α]

satisfy the above level-t Sherali-Adams tightening.

Proof: Consider some S ⊆ [n], |S| < t, and some i 6∈ S. Note that the distributions D(S),D(S ∪
{i}) are equal on S, and therefore we have∑

j∈[q]

X(S∪{i},α◦j) =
∑
j∈[q]

Prβ∼D(S∪{i})[β = α ◦ j]

=
∑
j∈[q]

Prβ∼D(S∪{i})[(β(i) = j) ∧ (β(S) = α)]

= Prβ∼D(S∪{i})[β(S) = α]
= Prβ′∼D(S)[β

′ = α]
= X(S,α).

The same argument also shows that if S = ∅, then X(∅,∅) = 1. Finally, it is clear that all linear
variables are assigned non negative values completing the lemma.

2.4 Pairwise Independence and Approximation Resistant Predicates

We say that a distribution µ over variables x1, . . . , xk, is a balanced pairwise independent distribu-
tion over [q]k, if we have

∀j ∈ [q].∀i. Prµ[xi = j] =
1
q

and ∀j1, j2 ∈ [q].∀i1 6= i2. Prµ[(xi1 = j1) ∧ (xi2 = j2)] =
1
q2
.

A predicate P is called approximation resistant if it is hard to approximate the MAX k-CSPq(P )
problem better than using a random assignment. Assuming the Unique Games Conjecture, Austrin
and Mossel [3] show that a predicate is approximation resistant if it is possible to define a balanced
pairwise independent distribution µ such that P is always 1 on the support of µ.

Definition 2.4 A predicate P : [q]k → {0, 1} is called promising, if there exist a distribution sup-
ported over a subset of P−1(1) that is pairwise independent and balanced. If µ is such a distribution
we say that P is promising supported by µ.

3 Towards Defining Consistent Distributions

To construct valid solutions for the Sherali-Adams LP tightening, we need to define distributions
over every set S of bounded size as is required by Lemma 2.3. Since we will deal with promising
predicates supported by some distribution µ, in order to satisfy consistency between distributions
we will heavily rely on the fact that µ is a balanced pairwise independent distribution.

Consider for simplicity that µ is uniform over P−1(1) (the intuition for the general case is not
significantly different). It is instructive to think of q = 2 and the predicate P being k-XOR, k ≥ 3.
Observe that the uniform distribution over P−1(1) is pairwise independent and balanced. A first
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attempt would be to define for every S, the distribution D(S) as the uniform distribution over all
consistent assignments of S. We argue that such distributions are in general problematic. This
follows from the fact that satisfying assignments are not always extendible. Indeed, consider two
constraints Ci1 , Ci2 ∈ L that share a common variable j ∈ R. Set S2 = Ti1 ∪Ti2 , and S1 = S2 \{j}.
Assuming that the support of no other constraint is contained in S2, we get that distribution D(S1)
maps any variable in S1 to {0, 1} with probability 1/2 independently, but some of these assignments
are not even extendible to S2 meaning that D(S2) will assign them with probability zero.

Thus, to define D(S), we cannot simply sample assignments satisfying all constraints in C(S) with
probabilities given by µ. In fact the above example shows that any attempt to blindly assign a set
S with a distribution that is supported on all satisfying assignments for S is bound to fail. At the
same time it seems hard to reason about a distribution that uses a totally different concept. To
overcome this obstacle, we take a two step approach:

1. For a set S we define a superset S such that S is “global enough” to contain sufficient
information, while it also is “local enough” so that C(S) is not too large. We require the
property of such sets that if we remove S and C(S), then the remaining graph G|−S still has
good expansion. We deal with this in Section 3.1.

2. The distribution D(S) is going to be the uniform distribution over satisfying assignments in
S. In the case that µ is not uniform over P−1(1), we give a natural generalization to the
above uniformity. We show how to define distributions, which we denote by Pµ(S), such that
for S1 ⊆ S2, the distributions are guaranteed to be consistent if G|−S1 has good expansion.
This appears in Section 3.2.

We then combine the two techniques and define D(S) according to Pµ(S). This is done in section 4.

3.1 Finding Advice-Sets

We now give an algorithm below to obtain a superset S for a given set S, which we call the advice-set
of S. It is inspired by the “expansion correction” procedure in [5].

Algorithm Advice

The input is an (r, e1) boundary expanding bipartite graph G = (L,R,E), some e2 ∈ (0, e1), and
some S ⊆ R, |S| < (e1 − e2)r, with some order S = {x1, . . . , xt}.

Initially set S ← ∅ and ξ ← r
For j = 1, . . . , |S| do

Mj ← ∅
S ← S ∪ {xj}
If G|−S is not (ξ, e2) boundary expanding then

Find a maximal Mj ⊂ L in G|−S , such that |Mj | ≤ ξ in G|−S and |∂Mj | ≤ e2|Mj |
S ← S ∪ ∂Mj

ξ ← ξ − |Mj |
Return S

Theorem 3.1 Algorithm Advice, with internal parameters e1, e2, r, returns S ⊆ R such that (a)
G|−S is (ξS , e2) boundary expanding, (b) ξS ≥ r − |S|

e1−e2 , and (c) |S| ≤ e1|S|
e1−e2 .
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Proof: Suppose that the loop terminates with ξ = ξS . Then
∑t

j=1 |Mj | = r−ξS . Since G is (r, e1)
boundary expanding, the set M = ∪tj=1Mj has initially at least e1(r − ξS) boundary neighbors in
G. During the execution of the while loop, each set Mj has at most e2|Mj | boundary neighbors
in G|−S . Therefore, at the end of the procedure M has at most e2(r − ξS) boundary neighbors in
G|−S . It follows that |S|+ e2(r − ξS) ≥ e1(r − ξS), which implies (b).

From the bound size of S we know that ξS > 0. In particular, ξ remains positive throughout the
execution of the while loop. Next we identify a loop invariant: G|−S is (ξ, e2) boundary expanding.

Indeed, note that the input graph G is (ξ, e1) boundary expanding. At step j consider the set
S ∪ {xj}, and suppose that G−(S∪{xj}) is not (ξ, e2) boundary expanding. We find maximal Mj ,
|Mj | ≤ ξ, such that |∂Mj | ≤ e2|Mj |. We claim that G−(S∪{xj}∪∂Mj)

is (ξ − |Mj |, e2) boundary
expanding (recall that since ξ remains positive, |Mj | < ξ). Now consider the contrary. Then, there
must be M ′ ⊂ L such that |M ′| ≤ ξ − |Mj | and such that |∂M ′| ≤ e2|M ′|. Consider then Mj ∪M ′
and note that |Mj ∪M ′| ≤ ξ. More importantly |∂(Mj ∪M ′)| ≤ e2|Mj ∪M ′|, and therefore we
contradict the maximality of Mj ; (a) follows.

Finally note that S consists of S union the boundary neighbors of all Mj . From the arguments
above, the number of those neighbors does not exceed e2(r− ξS) and hence |S| ≤ |S|+ e2(r− ξS) ≤
|S|+ e2|S|

e1−e2 = e1|S|
e1−e2 , which proves (c).

3.2 Defining the Distributions Pµ(S)

We now define for every set S, a distribution Pµ(S) such that for any α ∈ [q]S , PrPµ(S)[α] > 0
only if α satisfies all the constraints in C(S). For a constraint Ci with set of inputs Ti, defined as
Ci(xi1 , . . . , xik) ≡ P (xi1 + ai1 , . . . , xik + aik), let µi : [q]Ti → [0, 1] denote the distribution

µi(xi1 , . . . , xik) = µ(xi1 + ai1 , . . . , xik + aik)

so that the support of µi is contained in C−1
i (1). We then define the distribution Pµ(S) by picking

each assignment α ∈ [q]S with probability proportional to
∏
Ci∈C(S) µi(α(Ti)). Formally,

PrPµ(S)[α] =
1
ZS
·
∏

Ci∈C(S)

µi(α(Ti)) (1)

where α(Ti) is the restriction of α to Ti and ZS is a normalization factor given by

ZS =
∑
α∈[q]S

∏
Ci∈C(S)

µi(α(Ti)).

To understand the distribution, it is easier to think of the special case when µ is just the uniform
distribution on P−1(1) (like in the case of MAX k-XOR). Then Pµ(S) is simply the uniform dis-
tribution on assignments satisfying all the constraints in C(S). When µ is not uniform, then the
probabilities are weighted by the product of the values µi(α(Ti)) for all the constraints 2. However,
we still have the property that if PrPµ(S)[α] > 0, then α satisfies all the constraints in C(S).

In order for the distribution Pµ(S) to be well defined, we need to ensure that ZS > 0. The following
lemma shows how to calculate ZS if G is sufficiently expanding, and simultaneously proves that if
S1 ⊆ S2, and if G|−S1 is sufficiently expanding, then Pµ(S1) is consistent with Pµ(S2) over S1.

2Note however that Pµ(S) is not a product distribution because different constraints in C(S) may share variables.
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Lemma 3.2 Let Φ be a MAX k-CSP(P) instance as above and S1 ⊆ S2 be two sets of variables such
that both G and G|−S1 are (r, k − 2 − δ) boundary expanding for some δ ∈ (0, 1) and |C(S2)| ≤ r.
Then ZS2 = q|S2|/qk|C(S2)|, and for any α1 ∈ [q]S1∑

α2∈[q]S2

α2(S1)=α1

PrPµ(S2)[α2] = PrPµ(S1)[α1].

Proof: Let C = C(S2) \C(S1) be given by the set of t many constraints Ci1 , . . . , Cit with each Cij
being on the set of variables Tij . Some of these variables may be fixed by α1. Also, any α2 consistent
with α1 can be written as α1 ◦ α for some α ∈ [q]S2\S1 . Below, we express these probabilities in
terms the product of µ on the constraints in C(S2) \ C(S1).

Note that the equations below are still correct even if we haven’t shown ZS2 > 0 (in that case both
sides are 0). In fact, replacing S1 by ∅ in the same calculation will give the value of ZS2 .

ZS2 ·
∑

α2∈[q]S2

α2(S1)=α1

PrPµ(S2)[α2] =
∑

α∈[q]S2\S1

∏
Ci∈C(S2)

µi((α1 ◦ α)(Ti))

=

 ∏
Ci∈C(S1)

µi(α1(Ti))

 ∑
α∈[q]S2\S1

t∏
j=1

µij ((α1 ◦ α)(Tij ))

=
(
ZS1 · PrPµ(S1)[α1]

) ∑
α∈[q]S2\S1

t∏
j=1

µij ((α1 ◦ α)(Tij ))

=
(
ZS1 · PrPµ(S1)[α1]

)
· q|S2\S1| E

α∈[q]S2\S1

 t∏
j=1

µij ((α1 ◦ α)(Tij ))


The following claim lets us calculate this expectation conveniently using the expansion of G|−S1 .

Claim 3.3 Let C be as above. Then there exists an ordering Ci′1 , . . . , Ci′t of constraints in C and a
partition of S2 \ S1 into sets of variables F1, . . . , Ft such that for all j, Fj ⊆ Ti′j , |Fj | ≥ k − 2, and

∀j Fj ∩
(
∪l>jTi′l

)
= ∅.

Proof: (of Claim 3.3) We build the sets Fj inductively using the fact that G|−S1 is (r, k − 2− δ)
boundary expanding.

Start with the set of constraints C1 = C. Since |C1| = |C(S2) \ C(S1)| ≤ r, this gives that |∂(C1) \
S1| ≥ (k − 2 − δ)|C1|. Hence, there exists Cij ∈ C1 such that |Tij ∩ (∂(C1) \ S1)| ≥ k − 2. Let
Tij ∩ (∂(C1) \ S1) = F1 and i′1 = ij . We then take C2 = C1 \ {Ci′1} and continue in the same way.

Since at every step, we have Fj ⊆ ∂(Cj) \ S1, and for all l > j Cl ⊆ Cj , Fj shares no variables with

Γ(Cl) for l > j. Hence, we get Fj ∩
(
∪l>jTi′l

)
= ∅ as claimed.

Using this decomposition, the expectation above can be split as

E
α∈[q]S2\S1

 t∏
j=1

µij (α1 ◦ α(Tij ))

 = E
βt∈[q]Ft

[
µi′t . . . E

β2∈[q]F2

[
µi′2 E

β1∈[q]F1

[
µi′1

]]
. . .

]
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where the input to each µi′j depends on α1 and βj , . . . , βt but not on β1, . . . , βj−1.

We now reduce the expression from right to left. Since F1 contains at least k− 2 variables and µi′1
is a balanced pairwise independent distribution,

E
β1∈[q]F1

[
µi′1

]
=

1
q|F1|

· Prµ[(α1 ◦ β2 . . . ◦ βt)(Ti′1 \ F1)] =
1
qk

irrespective of the values assigned by α1 ◦ β2 ◦ . . . ◦ βt to the remaining (at most 2) variables in
Ti′1 \ F1. Continuing in this fashion from right to left, we get that

E
α∈[q]S2\S1

 t∏
j=1

µij ((α1 ◦ α)(Tij ))

 =
(

1
qk

)t
=
(

1
qk

)|C(S2)\C(S1)|

Hence, we get that

ZS2 ·
∑

α2∈[q]S2

α2(S1)=α1

PrPµ(S2)[α2] =

(
ZS1 ·

q|S2\S1|

qk|C(S2)\C(S1)|

)
PrPµ(S1)[α1]. (2)

Summing over all α1 ∈ [q]S1 on both sides gives

ZS2 = ZS1 ·
q|S2\S1|

qk|C(S2)\C(S1)| .

Since we know that G is (r, k − 2 − δ) boundary expanding, we can replace S1 by ∅ in the above
equation to obtain ZS2 = q|S2|/qk|C(S2)| as claimed. Also note that since C(S1) ⊆ C(S2), ZS2 > 0
implies ZS1 > 0. Hence, using equation (2) we get∑

α2∈[q]S2

α2(S1)=α1

PrPµ(S2)[α2] = PrPµ(S1)[α1]

which proves the lemma.

4 Constructing the Integrality Gap

We now show how to construct integrality gaps using the ideas in the previous section. For a
given promising predicate P , our integrality gap instance will be random instance Φ of the MAX
k-CSPq(P ) problem. To generate a random instance with m constraints, for every constraint Ci,
we randomly select a k-tuple of distinct variables Ti = {xi1 , . . . , xik} and ai1 , . . . , aik ∈ [q], and put
Ci ≡ P (xi1 + ai1 , . . . , xik + aik). It is well known and used in various works on integrality gaps
and proof complexity (e.g. [5], [1], [23] and [22]), that random instances of CSPs are both highly
unsatisfiable and highly expanding. We capture the properties we need in the lemma below (for a
proof see e.g. [28]).

Lemma 4.1 Let ε, δ > 0 and a predicate P : [q]k → {0, 1} be given. Then there exist γ =
O(qk log q/ε2), η = Ω((1/γ)10/δ) and N ∈ N, such that if n ≥ N and Φ is a random instance of
MAX k-CSP(P ) with m = γn constraints, then with probability 1− o(1)

9



1. OPT(Φ) ≤ |P
−1(1)|
qk

(1 + ε) ·m.

2. For any set C of constraints with |C| ≤ ηn, we have |∂(C)| ≥ (k − 2− δ)|C|.

Let Φ be an instance of MAX k-CSPq on n variables for which GΦ is (ηn, k − 2 − δ) boundary
expanding for some δ < 1/2, as in Lemma 4.1. For such a Φ, we now define the distributions D(S).

For a set S of size at most t = ηδn/4k, let S be subset of variables output by the algorithm
Advice when run with input S and parameters r = ηn, e1 = (k − 2 − δ), e2 = (k − 2 − 2δ) on the
graph GΦ. Theorem 3.1 shows that

|S| ≤ (k − 2− δ)|S|/δ ≤ ηn/4.

We then use (1) to define the distribution D(S) for sets S of size at most δηn/4k as

PrD(S)[α] =
∑
β∈[q]S

β(S)=α

PrPµ(S)[β].

Using the properties of the distributions Pµ(S), we can now prove that the distributions D(S) are
consistent.

Claim 4.2 Let the distributions D(S) be defined as above. Then for any two sets S1 ⊆ S2 ⊆ [n]
with |S2| ≤ t = ηδn/4k, the distributions D(S1),D(S2) are equal on S1.

Proof: The distributions D(S1),D(S2) are defined according to Pµ(S1) and Pµ(S2) respectively.
To prove the claim, we show that Pµ(S1) and Pµ(S2) are equal to the distribution Pµ(S1 ∪ S2) on
S1, S2 respectively (note that it need not be the case that S1 ⊆ S2).

Let S3 = S1 ∪ S2. Since |S1|, |S2| ≤ ηn/4, we have |S3| ≤ ηn/2 and hence |C(S3)| ≤ ηn/2. Also,
by Theorem 3.1, we know that both G|−S1

and G|−S2
are (2ηn/3, k− 2− 2δ) boundary expanding.

Thus, using Lemma 3.2 for the pairs (S1, S3) and (S2, S3), we get that

PrD(S1)[α1] =
∑

β1∈[q]S1

β1(S1)=α1

PrPµ(S1)[β1]

=
∑

β3∈[q]S3

β3(S1)=α1

PrPµ(S3)[β3]

=
∑

β2∈[q]S2

β2(S1)=α1

PrPµ(S2)[β2]

=
∑

α2∈[q]S2

α2(S1)=α1

PrD(S2)[α2]

which shows that D(S1) and D(S2) are equal on S1.

It is now easy to prove the main result.

10



Theorem 4.3 Let P : [q]k → {0, 1} be a promising predicate. Then for every constant ζ > 0,
there exist c = c(q, k, ζ), such that for large enough n, the integrality gap of MAX k-CSP(P ) for the

tightening obtained by cn levels of the Sherali-Adams hierarchy is at least
qk

|P−1(1)|
− ζ.

Proof: We take ε = ζ/qk, δ = 1/4 and consider a random instance Φ of MAX k-CSP(P ) with
m = γn as given by Lemma 4.1. Thus, OPT(Φ) ≤ |P

−1(1)|
qk

(1 + ε) ·m.

On the other hand, by Claim 4.2 we can define distributions D(S) over every set of at most δηn/4k
variables such that for S1 ⊆ S2, D(S1) and D(S2) are consistent over S1. By Lemma 2.3 this gives
a feasible solution to the LP obtained by δηn/4k levels. Also, by definition of D(S), we have that
PrD(S)[α] > 0 only if α satisfies all constraints in C(S). Hence, the value of FRAC(Φ) is given by

m∑
i=1

∑
α∈[q]Ti

Ci(α)X(Ti,α) =
m∑
i=1

∑
α∈[q]Ti

Ci(α)PrD(Ti)[α] =
m∑
i=1

∑
α∈[q]Ti

PrD(Ti)[α] = m.

Thus, the integrality gap after δηn/4k levels is at least

FRAC(Φ)
OPT(Φ)

=
qk

|P−1(1)|(1 + ε)
≥ qk

|P−1(1)|
− ζ.
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