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Abstract

We consider a model (BT) for backtracking algorithms. Our model generalizes both the
priority model of Borodin, Nielson and Rackoff, as well as a simple dynamic programming
model due to Woeginger, and hence spans a wide spectrum of algorithms. After witnessing the
strength of the model, we then show its limitations by providing lower bounds for algorithms in
this model for several classical problems such as interval scheduling, knapsack and satisfiability.

1 Introduction

Proving unconditional lower bounds for computing explicit functions remains one of the most
challenging problems in computational complexity. Since 1949, when Shannon showed that a
random function has large circuit complexity [25], little progress has been made toward proving
lower bounds for the size of unrestricted Boolean circuits that compute explicit functions. One
explanation for this phenomenon was given by the Natural Proofs approach of Razborov and
Rudich [24] who showed that most of the existing lower bound techniques are incapable of proving
such lower bounds. One way to investigate the complexity of explicit functions in spite of these
difficulties is to study reductions between problems, e.g. to identify a canonical problem (like an
NP-complete problem) and show that a given computational task is “not easier” than solving this
problem. Another approach would be to restrict the model to avoid the inherent Natural Proof
limitations, while preserving a model strong enough to incorporate many “natural” algorithms.
This second direction has recently attracted the attention of many researchers. Khanna, Mot-
wani, Sudan and Vazirani [22] formalize various types of local search paradigms, and in doing so,
provide a more precise understanding of local search algorithms. Woeginger [26] defines a class of
simple dynamic programming algorithms and provides conditions for when a dynamic programming
solution can be used to derive a FPTAS for an optimization problem. Borodin, Nielsen and Rackoff
[8] introduce priority algorithms as a model of greedy-like algorithms. Arora, Bollobds and Lovész
[7] study wide classes of LP formulations, and prove integrality gaps for vertex cover within these
classes. The most popular methods for solving SAT are DPLL algorithms—a family of backtrack-
ing algorithms whose complexity has been characterized in terms of resolution proof complexity
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(see for example [12, 13, 10, 18]). Finally, Chvétal [9] proves a lower bound for Knapsack in an
algorithmic model that involves elements of branch-and-bound and dynamic programming.

We continue in this direction by presenting a hierarchy of models for backtracking algorithms for
general search and optimization problems. Many well-known algorithms and algorithmic techniques
can be simulated within these models, both those that are usually considered backtracking and some
that would normally be classified as greedy or dynamic programming. We prove several upper and
lower bounds on the capabilities of algorithms in this model, in some cases proving that the known
algorithms are essentially the best possible within the model.

The starting point for the BT model is the priority algorithm model [8]. We assume that the
input is represented as a set of data items, where each data item is a small piece of information
about the problem; it may be a time interval representing a job to be scheduled, a vertex with its
list of the neighbours in a graph, a propositional variable with all clauses containing it in a CNF.
Priority algorithms consider one item at a time and maintain a single partial solution (based on
the items considered thus far) that it continues to extend. What is the order in which items are
considered? A fixed order algorithm initially orders the items according to some criteria (e.g., in
the case of knapsack, sort the items by their weight to value ratio). A more general (adaptive
order) approach would be to change the ordering according to the items seen so far. For example,
in the greedy set cover algorithm, in every iteration we order the sets according to the number
of yet uncovered elements. (The distinction between fixed and adaptive orderings has also been
recently studied in [16].) Rather than imposing complexity constraints on the allowable orders,
we require it to be localized By introducing branching, a backtracking algorithm (BT) can pursue
a number of different partial solutions. Given a specific input, a BT algorithm then induces a
computation tree. Of course, it is possible to solve any properly formulated search or optimization
problem in this manner: simply branch on every possible decision for every input item. In other
words, there is a tradeoff between the quality of a solution and the complexity of the BT-algorithm.
We view the maximum width of a BT program as the number of partial solutions that need to
be maintained in parallel in the worst case. As we will see, this extension allows us to model
the simple dynamic programming framework of Woeginger [26]. This branching extension can be
applied to either the fixed or adaptive order (fixed BT and adaptive BT) and in either case each
branch (corresponding to a partial solution) considers the items in the same order. For example,
various DP based optimal and approximate algorithms for the knapsack problem can be seen as
fixed or adaptive BT algorithms. In order to model the power of backtracking programs (say as in
DPLL algorithms for SAT)! we need to extend the model further. In a fully adaptive BT we allow
each branch to choose its own ordering of input items. Furthermore, we need to allow algorithms
to prioritize (using a depth first traversal of the induced computation tree) the order in which
the different partial solutions are pursued. In this setting, we can consider the number of nodes
traversed in the computation tree before a solution is found (which may be smaller than the tree’s
width).

Our results The problems we consider are all well-studied; namely, knapsack, satisfiability and
interval scheduling. For knapsack, we show an exponential lower bound (for optimality) on the
width of adaptive BT algorithms, and for achieving an FPTAS in the adaptive model we show
upper and lower bounds polynomial in 1/e. Knapsack also exhibits a separation between width-1
and width-2 adaptive BT: a width-1 BT cannot approximate knapsack better than a factor of
n~/4 while a standard 1 /2-approximation falls into width-2 BT. For SAT, we show that 2-SAT

!The BT model encompasses DPLL in many situations where access to the input is limited. If access is unlimited,
then proving superpolynomial lower bounds for DPLL amounts to proving P # NP.



is solved by a linear-width adaptive BT, but needs exponential width for any fixed order BT, and
also that MAX2SAT cannot be efficiently approximated by any fixed BT algorithm. We then show
that 3-SAT requires exponential width and exponential depth first size in the fully adaptive BT
model. This lower bound in turn gives us an exponential bound on the width of fully adaptive
BT algorithms for knapsack by “BT reduction.” For m-machine interval scheduling we show an
Q(n™)-width lower bound (for optimality) in the adaptive BT model, an inapproximability result
in the fixed BT model, and an approximability separation between width-1 BT and width-2 BT in
the adaptive model.

2 The Backtracking Model and its Relatives

Let D be an arbitrary data domain that contains objects D; called data items. Let H be a set,
representing the set of allowable decisions for a data item. For example, for the knapsack problem,
a natural choice for D would be the set of all pairs (z,p) where z is a weight and p is a profit;
the natural choice for H is {0,1} where 0 is the decision to reject an item and 1 is the decision to
accept an item.

A Backtracking search /optimization problem P is specified by a pair (Dp, fp) where Dp is
the underlying data domain, and fp is a family of objective functions, f% : (D1,...,Dp,a1,...,a,) —
R, where a1, ..., an is a set of variables that range over H, and D1,..., D, is a set of variables that
range over D. On input I = Dq,..., D, € D, the goal is to assign each z; a value in H so as to
maximize (or minimize) f3. A search problem is a special case where f} outputs either 1 or 0.

For any domain S we write O(S) for the set of all orderings of elements of S. We are now ready
to define a backtracking algorithm for a backtracking problem.

Definition 1. A backtracking algorithm A for problem P = (D,{f™}) consists of the ordering
functions
rk . DF x HF s O(D)

and the choice functions
& DM x B s O(H U {L)).2

We separate the following three classes of BT algorithms

e Fixed algorithms: 7{64 does not depend upon any of its arguments.

e Adaptive algorithms: rﬁ depends on D1, D, ..., Dy but not on aq, ..., a.

e Fully adaptive algorithms: rf‘l depends on both D1, Ds, ..., Dy and a4, ..., a.

The idea of the above specification of A is as follows. Initially, the set of actual data items
is some unknown set I of items from D. At each point in time, a subset of actual data items,
Dq,...,D;, C S has been revealed, and decisions z1,...,z; have been made about each of these
items in turn. At the next step, the backtrack algorithm (possibly) re-orders the set of all possible
data items as specified by r_’j‘. Then as long as there are still items from I left to be discovered,
another data item from I is revealed with the property that the one revealed next will be the first
item in I, according to the ordering 7‘1“4, that has not already been revealed. When this new item,
D11 € I has been revealed, a set of possibilities are explored on this item, as specified by c’f4.

2 All of our lower bound results will apply to non-uniform BT algorithms that know n, the number of input items,

and hence more formally, the ordering and choice functions should be denoted as ri}’k and an’k . A discussion regarding

“precomputed” information can be found in [8].



Namely, the algorithm can try any subset of choices from H on this new data item, including the
choice to abort (L). This is described more formally by the notion of a computation tree of program
A on input I, as defined below. We say that a rooted tree is oriented if it has an ordering on its
leaves from the left to the right.

Definition 2. Assume that P is a BT problem and A is a BT algorithm for P. For any instance
I =(D,...,Dy,), D; € Dp we define the computation tree T4(I) as an oriented rooted tree in
the following recursive way.

e FEach node v of depth k in the tree is labelled by a tuple < DY,...D},af,...a} >.
e The root node has the empty label.

o For every node v of depth k < n with a label < 5”,&"’ >, let Dy, be the data item in I\

{D?,...,D}} that goes first in the list 7‘1“4(1_7.”, a’). Assume that the output c’j‘(ﬁ”, D} ,@") has
the form (c1,...,cq, L,cqs1,--.), where ¢; € H. If d =0 then v has no children. Otherwise it
has d child nodes v1, ..., vq that go from left to right and have labels (D}, ..., qu_l, all, ..., aZiH) =

(DY, ... Dy, D}y, a9, ...,a}, ¢;) resp.

Each leaf node t of depth n contains a permuted sequence of the data items I (permuted by
the ordering functions rﬁ used on the path ending at t) with the corresponding decisions in H
(determined by the choice functions on this path). For a search problem we say that a leaf is a
solution for I = (D, ..., Dy) iff fp(DY, ..., D}, dt, ....al)) = 1 where a, is the decision for D}. For
an optimization problem every leaf determines a solution and a value for the objective function on
the instance 1. (We can define the semantics so that the value of the objective function is 0 for a

mazimization problem and oo for a minimization problem if the solution is not feasible.)

Definition 3. We say that A is a correct algorithm for a BT search problem P iff for any YES
instance I, TA(I) contains at least one solution. For an optimization problem, the value of A(I) is
the value of the leaf that optimally or best approximates the value of the objective function on the
instance I.

e For an algorithm A we define the width of the computation W(I) as the mazimum of
the number of nodes over all depth levels of T A(I).

o We define the depth first search size Sj{(]) as the number of tree nodes that lie to the left
of the leftmost solution of T A(I).

Proposition 4. For any A and I 8% (I) < nW4(I).

Definition 5. For any A and any n, define W4(n), the width of A on instances of size n as
max{Wu(I) : |I| =n}. Define S%(n) analogously.

The size ij(I ) corresponds to the running time of the depth first search algorithm on T4(7).
We will be mainly interested in the width of T)4(I) for two reasons. First, it has a natural com-
binatorial meaning: the maximum number of partial solutions that we maintain in parallel during
the execution. Second, it gives a universal upper bound on the running time of any search style.

While the Fixed and Adaptive classes are ostensibly less powerful than Fully Adaptive algo-
rithms, they remain quite powerful. For example, the width 1 algorithms in these classes are
precisely the fixed and adaptive priority algorithms, respectively, that capture many well known



greedy algorithms. In addition, we will see that they can simulate large classes of dynamic program-
ming algorithms; for example, Fixed BT algorithms can simulate Woeginger’s DP-simple algorithms
([26]).

The reader may notice some similarities between the BT model and the online setting. Like
online algorithms, the input is not known to the algorithm in advance, but is viewed as an input
stream. However, there are two notable differences: First, the ordering is given here by the algo-
rithm and not by the adversary, and secondly, BT algorithms are allowed to branch, or try more
than one possibility.

A note on computational complexity: We do not impose any restrictions on the functions
rﬁ‘ and c’f4 like computability in polynomial time. This is because all lower bounds in this model
come from information theoretic constraints and hold for any (even non-computable) rﬁt and c’f4.
However, if these functions are polytime computable then there exists an efficient algorithm B that
solves the problem in time S%(I )n®W) . In particular, all upper bounds presented in this paper
correspond to algorithms which are efficiently computable. Another curious aspect is that one has
to choose the representation model carefully in order to limit the information in each data item,
because once a BT algorithm has seen all of the input (or can infer it), it can immediately solve the
problem. Hence, we should emphasize that there are unreasonable input models that will render the
model useless; for example if a node in a graph contans the information about its neighbours and
their neighbours, then it contains enough information that the ordering function can summon the
largest clique as its first items, making an NP-hard problem solvable by a width-1 BT algorithm.
In our discussion, we use input representations which seem to us the most natural.

2.1 BT as an Extension of Dynamic Programming and other Algorithm Models

How does our model compare to other models? As noted above, the width 1 BT algorithms are
exactly the priority algorithms, so many greedy algorithms fit within the framework. Examples
include Kruskal or Prim’s algorithms for spanning tree, Dijkstra’s shortest path algorithm, and
Johnson’s greedy 2-approximation for vertex cover.

Secondly, which is also one of the main motivations of this work, the fixed-order model cap-
tures an important class of dynamic programming algorithms defined by Woeginger [26] as simple
dynamic-programming or DP-simple. Many algorithms we call “DP algorithms” follow the schema
formalized by Woeginger: Given an ordering of the input items, in the k-th phase the algorithm
considers the k-th input item X}, and produces a set Sy of solutions to the problem with input
{X1,...,Xx}. Every solution in Sy must extend a solution in Sy ;. Knapsack (with small integer
input parameters), and interval scheduling with m machines, are two well studied problems which
have efficient DP-simple algorithms.

The simulation of these algorithms by a fixed-BT algorithm is straightforward once one makes
the following observation. Since all parallel runs of a fixed or adaptive BT algorithm view the same
input, and the computational power of the function f is unlimited, each run can simulate all other
runs. Thus, width w(n)-algorithms in both of these models are equivalent to sequential algorithms
that maintain a set T} of at most w(n) partial solutions for the partial instance (representing each
of the up to w(n) active runs at this level) with the following restriction. Since the solution found
must extend one of the partial solutions for the runs, any solution in T%; must extend a solution
in 8. For concreteness, we consider the simulation of the DP algorithm to solve interval scheduling
on one machine. Recall, this algorithm orders intervals by their ending time (earliest first). It then
calculates T'[j] = the intervals among the first j which give maximal profit and which schedule the

3Recently, a version of the online model in which many partial solutions may be constructed was studied by
Halldorsson, et al [19]. Their online model is a special case of a fixed order BT algorithm.



j’th interval; of course T'[j] extends T'[i] for some i < j. We can now think of a BT algorithm
which in the j-th level has partial-solutions corresponding to 7°[0], T'[1],...,T[j]. To calculate the
partial solutions for the first j + 1 intervals we take T[j + 1] extending one of the T'[i]'s and also
take T'[0],T'[1],...,T[j] so as to extend the corresponding partial solutions with a ’reject’ decision
on the j + 1** interval.

Note that for most dynamic programming algorithms, the size of the number of solutions main-
tained is determined by an array where each axis has length at most n. Thus, the size of T}, typically
grows as some polynomial n?. In this case, we call d the dimension of the algorithm. Note that we
have d = logw(n)/logn, so a lower bound on width yields a lower bound on this dimension.

While powerful, there are also some restrictions of the model that seem to indicate that we can-
not simulate all (intuitively understood as) back-tracking or branch-and-bound algorithms. That
is, our decision to abort a run can only depend on the partial instance, whereas many branch-
and-bound methods use a global prunning criterion such as the value of an LP relaxation. These
types of algorithms are incomparable with our model. Since locality is the only restriction we put
on computation, it seems difficult to come up with a meaningful relaxation to include branch and
bound that does not trivialize our model.

2.2 General Lower bound strategy

Since most of our lower bounds are for the fixed and adaptive models, we present a general frame-
work for achieving these lower bounds. The fully adaptive lower bound for SAT (which yields the
fully adaptive knapsack lower bound by reduction) is more specialized.

Below is a 2-player game for proving these lower bounds for adaptive BT. This is similar to the
lower bound techniques for priority algorithms from [8, 15]. The main difference is that there is a
set of partial solutions rather than a single partial solution. We will later describe how to simplify
the game for fixed BT.

The game is between the Solver and the Adversary. Initially, the Adversary presents to the
algorithm some finite set of possible input items, Py. Initially, partial instance Plj is empty, and
Ty is the set consisting of the null partial solution. The game consists of a series of phases. At
any phase i, there is a set of possible data items P; , a partial instance PI; and a set T; of partial
solutions for PI;. In phase %, ¢ > 1, the Solver picks any data item a € P; 1, adds a to obtain
PI; = PI;_1 U{a}, and chooses a set T; of partial solutions, each of which must extend a solution
in T; 1. The Adversary then removes a and some further items to obtain P;.

This continues until P; is empty. The Solver wins if PI; is not a valid instance, or if |T;| <
w(|PI|) for all 1 < i < n, and PS; is a valid solution, optimal solution, or approximately op-
timal solution for PI (if we are trying for a search algorithm, exact optimization algorithm, or
approximation algorithm, respectively). Otherwise, the Adversary wins.

Any BT algorithm of width w(n) gives a strategy for the Solver in the above game. Thus, a
strategy for the Adversary gives a lower bound on BT algorithms.

Our Adversary strategies will usually have the following form. The number of rounds, n will
be fixed in advance. We will maintain the following invariant: For any partial solution PS to PI;,
there is an extension of PI; to an instance A C PI; U P; so that all valid/optimal/ approximately
optimal solutions to A contain PS. We’ll call such a partial solution indispensable, since if PS & T;,
the Adversary can set P; to A, ensuring victory. Since all partial solutions are indispensable, either
the above strategy works, or the Solver keeps all partial solutions in T;, which grows exponentially
and eventually exceeds w(n).

For the fixed BT game, the Solver must order all items before the game starts. The Solver must
pick the first item in F; in this ordering as its move a. Other than that, the game is identical.



3 The Knapsack problem

The knapsack problem takes as input n non-negative integer pairs denoting the weight and profit
of n items, {(z1,p1),---,(Zn,pn)} and another number N, and returns a subset S C [n] that
maximizes ) ;s p; subject to Y ;. qx; < N.

There are well-known simple-DP algorithms solving the knapsack problem in time polynomial
in n and N, or in time polynomial in n and II = max]_, p;. In this section, we prove that it is
not possible to solve the problem with an adaptive BT algorithm that is subexponential in n (and
does not depend on N or II). Further, we provide an almost tight bound for the width needed for
an adaptive BT that approximates the optimum to within 1 — e. We present an upper bound (due
to Marchetti-Spaccamela) of (1/¢)? based on a modification of the algorithms of Ibarra and Kim
[21] and Lawler [23]. The lower bound of (1/e) 717 uses the exponential lower bound for the exact
problem. We notice that both our lower bounds in this section hold for the simple variant of the
knapsack problem, where for each item the profit is equal to the weight.

Theorem 6. The width of an optimal adaptive BT for the simple knapsack problem is at least

(27) = @2/ V).

Proof. We are tempted to try to argue that having seen only part of the input, all possible subsets
of the current input must be maintained as partial solutions or else an adversary has the power to
present remaining input that will lead to an optimal solution with a solution the algorithm failed
to maintain. For an online algorithm, when the order is adversarial, such a simple argument can
be easily made to work. However, the ordering (and more so the adaptive ordering) power of the
algorithm requires a more subtle approach.

Let N be some large number which will be fixed later. (Since a simple-DP of size poly(n,N)
exists, it is clear that N must be exponential in n.) Our initial set of items are integers in I =
[0, % - N/n]. Take the first n/2 items, and following each one, apply the following “general-position”
rule to remove certain items from future consideration: remove all items that are the difference of
the sums of two subsets already seen; also remove all items that complete any subset to exactly N
(ie all items with value N — )7, s a; where a1, as,... are the numbers considered so far, and S is
any subset). These rules guarantee that at any point, no two subsets will generate the same sum,
and that no subset will sum to N. Also notice that this eliminates at most 3"/2 numbers so we
never exhaust the range from which we can pick the next input provided that 3"/2 << N.

Call the set of numbers seen so far P and consider any subset () contained in P of size n/4.
Our goal is to show that () is indispensable; that is, we want to construct a set R = Rg of size n/2
consisting of numbers in the feasible input with the following properties.

1. P U R does not contain two subsets that have the same sum.
2. ZieQ a; +) ;cpai =N

The above properties indeed imply that () is indispensable since obviously there is a unique solution
with optimal value IV and, in order to get it, ) is the subset that must be chosen among the elements
of P. We thus get a lower bound on the width which is the number of subsets of size n/4 in P;

namely (3) = Q(2"/?/v/n).

How do we construct the set R? We need it to sum to N — > @, while preserving property
1. The elements in R must be among the numbers in I that were not eliminated thus far. If R is
to sum to N — 3 @Q, then the average of the numbers in R should be a = 2 - (N — Y Q). Since

n

0<3> Q< (n/4)(8N/3n) = 2N/3, we get 2N/n < a < 2N/n. This is good news since the average

7



is not close to the extreme values of I, owing to the fact that the cardinality of R is bigger than
that of Q). We now need to worry about avoiding all the points that were eliminated in the past
and the ones that must be eliminated from now on to maintain property 1. The total number of
such points, U, is at most the number of ways of choosing two disjoint subsets out of a set of n
elements, namely U < 3".

Let J = [a—U, a+U]. We later make sure that J C I. We first pick n/2—2 elements in J that (i)
avoid all points that need to be eliminated, and (ii) sum to a number w so that |w—a(n/2—2)| < U.
This can be done by iteratively picking numbers bigger/smaller than a according to whether they
average to below/above a. To complete we need to pick two points by, by € I that sum tov = fa—w
and so that by, be, by — by are not the difference of sums of two subsets of the n — 2 items picked
so far. Assume for simplicity that v/2 is an integer. Of the 2U + 1 pairs (v/2 —4,v/2 + i), where
i1 =1...2U + 1, at least one pair by, by will have all the above conditions. All that is left to check
is that we never violated the range condition, ie we always chose items in [0, 3 - N/n]. We can see
that the smallest number we could possibly pick is a — U — (2U + 1) > N/n — 3U — 1. Similarly
the biggest number we might take is a +3U +1 < 2N/n + 3U + 1. These numbers are in the valid

range as long as %N/n > 3U + 1. Since U < 3™ we get that N = 5n3" suffices. O

A more careful analysis of the preceding proof yields the following width-approximability trade-
off.

Theorem 7. Knapsack can be (1 — ¢)-approzimated by a width (1/€)? adaptive-BT. At least width
(1/6)1/3'17 is needed for such an approzimation, even for the simple knapsack problem.

Proof. Lower Bound. We take the existing lower bound for the exact problem and convert it to
a width lower bound for getting a 1 — ¢ approximation. Recall that the resolution parameter N
in that proof had to be 5n3" for getting a width lower bound of 2"/2 /+/n. For a given width +,
we might hope to lower the necessary resolution in order to achieve an inapproximability result.
We consider a Knapsack instance with u items that require exponential width (as is implied by
Theorem 6), and set N, the parameter for the range of the numbers to 5u3%. If u is such that
4 < 2%/2 /\/u then this problem cannot be solved optimally by a width-y BT algorithm. Recall, the
optimum is NV, and the next best is N — 1, and so the best possible approximation we can get is

(N —1)/N ~1—1/(5u3") ~ 1 — O(y210823),

Therefore Q((1/€)'/317) width is required to get a 1 — € approximation. To make the lower bound
work for any number of items, we simply add n — u O-items to the adversarial input.

Upper Bound (Marchetti-Spaccamela). We first sketch Lawler’s algorithm (built upon
that of Ibarra and Kim) to approximate knapsack. We call the solution that takes items by
nonincreasing order of their profit/weight as long as possible “the canonical solution”. Given
parameters K and T: Round all items of profit at least T' down to the closest multiple of K. Let
7 be the optimum and 7(7') be the optimum restricted to items of profit at least 7. For each
one of the possible 7(T")/K different profits, find the lowest weight bundle of large-profit items
attaining it using dynamic programming. Now supplement each such solution with the canonical
solution for the remaining items (with the remaining size of knapsack). Simple calculations done
in [23] show that the additive error in this solution is at most K7/T + T. This would have been
enough, if only the algorithm knew a good estimator 7’ to 7(T') in advance. Specifically, suppose
7(T)/2 < 7' < 7(T), then we can set K = €27'/4 and T = er’'/2 to get an additive error of at most
eT(T) < er. We now show that an adaptive BT algorithm can achieve this balance of parameters
using width 8/e2: Start with 7/ = II; set K = €27'/4 and T = e7'/2. As long as there are items



with profit at least T' take them (in any order) and keep solutions for all possible profits up to 27/
in multiples of K. If there is a solution that is at least 27" update 7' = 27'. Set K, T again by the
above relation to 7/. Notice that since the scaling factors double when we reset them, we are halving
the resolution and removing possible items from the first stage of the algorithm. This means that
whatever partial solutions we were maintaining before the parameter adjustment encompass those
we want to maintain afterwards. We continue until there all items have profit at most 7. At this
point we have maintained all solutions of the high-profit items in resolution K (notice the invariant
7(T) < 27'). From this point on, each one of the 27'/K = 8/¢* partial solutions is completed
greedily with items of profit smaller than 7. O

Remark 1. Certain known algorithms (see [17, 20]), which should intuitively be called greedy, allow
semi-revocable decisions. We can consider this additional strength in the context of BT algorithms.
This means that at any point we can revoke previous accept decisions. We only insist that any
partial solution is feasible (eg for the knapsack problem, we do not exceed the knapsack capacity
N ). This extension only applies to packing problems; that is, where changing accept decisions to
rejections does not make a feasible solution infeasible. We can extend the proof of theorems 6 and
7 so as to allow revocable acceptances with slightly worse parameters. Recall that in Theorem 6 we
look at n/2 elements of the range [0, N/2] and then show that all n/4 subsets are indispensable. We
can modify the proof so that this range is [aN/n,bN/n| for suitable constants a,b > 2; we look at
the first n/2 items and similar to the arguments in Theorem 6, show that all subsets of size n/(2b)
are indispensable. In the semi-revocable model it is no longer the case that this supplies a width
lower bound of (n7(/22b))’ but instead we should look for a family of feasible sets F such that any

of the indespensible sets of size n/(2b) is contained in some F € F. But, and this is the crucial
point, feasible sets must be of size < n/a, and so every f € F contains at most (n;L{;))) sets, and a

counting argument immediately shows that |F| > (n7(/22b)) / (n%;b)) = gu(n)

4 Satisfiability

The search problem associated with SAT is as follows: given a boolean conjunctive-normal-form
formula, f(z1,...,z,), output a satisfying assignment if one exists. There are several ways to
represent data items for the SAT problems, differing on the amount of information contained in
data items. The simplest weak data item contains a variable name together with the names of the
clauses in which it appears, and whether the variable occurs positively or negatively in the clause.
For example, the data item < x;, (j, +), (k, —) > means that z; occurs positively in clause C}, and
negatively in clause Cy, and these are the only occurrences of z; in the formula. The decision is
whether to set z; to 0 or to 1. We also define a strong model in which a data item fully specifies
all clauses that contain a given variable. Thus D; =< z;,C1, Co, ..., Cx >, where the C1, ..., Cy are
a complete description of the the clauses containing x;.

In general we would like to prove upper bounds for the weak data type, and lower bounds for
the strong data type. We will show that 2SAT (for the strong data type) requires exponential time
in the fixed BT model, but has a simple linear time algorithm in the adaptive BT model (for the
weak data type). Thus, we obtain an exponential separation between the fixed and adaptive BT
models. Next, we give exponential lower bounds in the fully adaptive model for 3SAT (strong data

type).



4.1 2-Satisfiability in the Fixed Model

In this section we show that the fixed BT model cannot solve 2SAT (or c-approximate MAX2SAT
for ¢ > 21/22 ) efficiently.

Theorem 8. For sufficiently large n, any fixed BT algorithm for solving 2SAT on n variables
requires width 2™ . This lower bound holds for the strong data type for SAT.

Proof. Consider a set of variables z1,...,z,. Each variable x; gives rise to many possible items,

each of which describes exactly two equations that hold for z;. In the end, we will select one item

from either (1) or (2) for each z;:

(1) For any choice of j # k € [n]\ {i}, ; = x; = xy, or ©; = z; # z} or T; # T; = T,

(2) For any choice of j € [n]\ {i},0=2; =z; or z; = z; = 1.

Of course, each of these constraints must be represented by a small (constant) number of clauses.
Call two items disjoint if they mention disjoint sets of variables. An r-chain is a chain of

equations of the form
? ?

O:y1:y2i---iyr—1:yr:17

where y1,...,yr € {z1,...,2,} and < is either = or #.

Consider any ordering of the initial set of input items. Let M be the first m = [n/11] disjoint
(1)-items in the ordering. Suppose these items are called ¥, ¢ < [n/11], and let ygéyé;yé be the
content of these items. This triple will form the middle of an 11-chain. For each %, choose eight
remaining variables in order to extend the chain to an 11-chain. That is, partition the remaining
variables into [n/11] disjoint sets (with possibly some items leftover if n is not divisible by 11), each
of size 8, so that for each i, we have an 11-chain involving the sequence of variables: y¢, 45, ..., yt;.

The adversary removes items to be consistent with the following 11-chains for each i:

. . . . . ? . ? . . . . .
0=y} =yb=vh =y = yi=ve=vt = ys = vb=ylo = v}, = 1.

That is, the adversary specifies (by removal of items) all equations in the chain (in particular, those
involving yé are consistent with M) except those relating 14 to yg and yg to yzl'o.

The adversary stops the game after phase ¢, the phase where we see the last item of M. Note
that at phase g, for each i: (i) the item y} has been revealed (so one of the three possibilities has
been revealed for the inequalities on either side of yf); (ii) the items 4, v4, ¥4 and 3¢, have not
been revealed; and (iii) all other items in the 11-chain may or may not be revealed, but if they
have been revealed, they are consistent with the equalities written above. Let P denote the set of
revealed items after ¢ phases of the game.

We want to show that each of the 2l"/1) assignments to the y& variables must be maintained
by the algorithm at level ¢ of the game. More formally, we partition the set of all decisions on P
into equivalence classes, where two partial solutions p; and po are equivalent if they are identical
over the yé variables. We will show that the set of all such equivalence classes is indispensable.

Consider one such equivalence class, and let a be the underlying assignment to the yé variables.
If the algorithm does not maintain a partial solution consistent with «, then the adversary can
further specify each of the 11-chains so that at least one chain will be left unsatisfied. Consider
chain i: there are several cases depending on the actual inequalities that are in P on the left and
right of y&. The first case is when 3§ = y& = % is in P. If a(y) = 0, then the algorithm throws
away all future inputs on the chain 7 except those consistent with the following picture:

O=yi=yi=rhi=yi=vi=vi=vi=yi =i #yio =yl =1
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Otherwise, if a(yt) = 1, the algorithm throws away all future inputs on chain i except those
consistent with:

0=yl =9 #Ys=Yi=Ys =Y = Yr = Ys = Yo = Y10 = Y11 = L.

The other two cases (when yi # yi = 4%, and when y = y& # y%) are handled similarly.
Thus we have shown that under this adversary strategy, the algorithm must consider at least
2n/11] assignments. O

We can also consider the associated optimization problem MAXSAT: find an assignment to the
variables of a CNF that maximizes the number of satisfied clauses. The above argument gives the
following constant-factor inapproximation lower bound for this problem:

Theorem 9. For any € > 0, there exists a 6 > 0 such that for all sufficiently large n, any fired BT
algorithm for solving MAX2SAT on n variables requires width 2°" to achieve a %—}—6 approzimation.
Again, this lower bound holds for the strong data type for SAT.

Proof. (of Theorem 9) The game is played exactly as in the proof of Theorem 8. Notice that, when
the algorithm does not cover a certain equivalence class with partial assignment ¢, the adversary
forces at least one 11-chain to be unsatisfied. In particular, 2 out of the 22 clauses representing
the 11-chain are unsatisfied (one associated with z5=2z% and one with z{=x%,). Now fix ¢ > 0 and
let § = (loge)lle®. If the algorithm maintains k& < 29" partial solutions at phase ¢, then it can
cover at most k of the a-equivalence classes. The probability that a random a-assignment agrees
with a fixed a-assignment on more than a (1/2 + 11¢)-fraction of the m = |n/11| variables that «
sets is at most e—(116°m — g—11€n_ If the algorithm maintains fewer than k «a-assignments, then
the adversary can find an assignment o that agrees with each of the k£ a-assignments on at most
a (1/2 + 1le)-fraction. Hence, in a (1/2 — 11e)-fraction of the 11-chains, 1/11 of the clauses are
unsatisfied by any of the algorithm’s partial solutions, so the algorithm leaves a (1/22 — €)-fraction
of all the clauses unsatisfied. O

A similar idea to the 2SAT inapproximation can be used to show an inapproximation result for
Vertex Cover (where the items are nodes with their adjacency lists).

Theorem 10. For any € > 0, there exists a § > 0 such that for all sufficiently large n, any
fized BT algorithm for solving Vertexz Cover on n vertices requires width 29 to achieve a % —€

approzrimation.

Proof. (sketch) Each node z; gives rise to three sets of items

(1) For j # k € [n]\ {4}, ©; — x; — z, (that is, z; has neighbors z; and zy).

(2) For any j € [n]\ {i}, z; — ;.

Let M be the first m = [n/17] disjoint (1)-items in the ordering: {y — vy —v%,}™ . Partition the
vertices into m groups of size 17 so that each contains an item from M. When the algorithm has
seen every item in M, the adversary selects one of the two following configurations for each group:

Y=Y — Y3 — Y6 —Yr —YUs — Yo — Ylo — Y11 — Yi2 —Yiz — Yia—¥is and i —ys — Yig — Yi7s
or
yh— oyt — vk — vyt -y —vh —vio — v — Yo —vle — vl and i —yh —yh —yis — vl — vis

If the algorithm has included %4 in the vertex cover and the adversary chooses the first configuration,
then the algorithm is forced to cover the 13-chain with 7 vertices when 6 would have been enough
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(so the whole group takes 9 instead of 8). On the other hand, if the algorithm has excluded yg
and the adversary chooses the second configuration, then the algorithm needs 6 for the 11-chain
instead of 5 (or 9 instead of 8 for the group). Note again that the algorithm cannot predict
the adversary’s choices when it is deciding about M because vertices y3, v%, &, v%2,4%3,4:6 are all
clouded in obscurity since they are the centerpoints of (1)-items disjoint from M.

Again, if the algorithm maintains only 2°n assignments to {yi}7, for § a constant less than
|n/17], then the adversary can choose an assignment such that 1/2—¢’ of the groups are non-optimal
(for some €'), giving an approximation no better than (1/2 4 €)1+ (1/2 —€')9/8 =17/16 —e. O

4.2 2-Satisfiability in the Adaptive Model

In this section, we show that allowing adaptive variable ordering avoids the exponential blow up
in the number of possible assignments that need to be maintained. That is, we give a linear width
BT algorithm for 25AT in the adaptive model.

Theorem 11. There is a width-O(n) adaptive BT algorithm for 2SAT on n variables. Further,
this upper bound holds for the weak data type for SAT.

Proof. (sketch) Consider the standard digraph associated with a 2SAT instance. Recall that the
standard algorithm for the problem goes via finding the strongly connected components of this
graph. This does not fit immediately into the BT model, since here, whenever we observe a
variable we must extend partial solutions by determining its value. The algorithm we present uses
the simple observation that a path in the graph, such as [; — ls — I3 — ... — [, has only linearly
many satisfying assignments; namely the variables along the path must be set to 0 up to a certain
point, and to 1 from that point on, which means at most m + 1 possible valid assignments to the
literals involved.

Using an adaptive ordering we can “grow” such a path as follows. Suppose we start with z;.
The algorithm then chooses a variable new z9 that appears in a clause -z V x2 if there is one (that
is, look at an edge x1 — x2). Then, it continue to look for a path z; — z2 — =3 and so on. As
long as this is possible we only need to maintain a linear number of solutions. When the path is
not extendable in this fashion, few different cases are possible. We sketch two. If we get a path
T1 — Tog — T3 — 9 we can safely set x9 to 1, 'prune’ it from the path and continue. If the path
is £1 — 9 — 3 — 22 then we know that zo = x3 and we introduce a new variable x93 that must
be set to this common value, and continue with the path 1 — zo3. O

5 3-Satisfiability in the Fully Adaptive Model

We prove an exponential lower bound for 3SAT using formulas that encode a full rank linear
system Ax = b over GF3. These formulas are efficiently solvable by Gaussian elimination, thus
they separate local search paradigms from algebraic methods .

Theorem 12. Any fully adaptive BT algorithm for 3SAT on n variables requires width 2™ and
depth-first size 2% . This lower bound holds for the strong data type for SAT.

*We would like to note that if one adds a little bit of random noise into the linear mapping (and the goal would
be to find a solution that satisfies almost all equations) then there is no efficient algorithm known for this task. It
was conjectured by the first author [1] that the resulting mapping may be a pseudorandom generator against P.
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5.1 Linear systems over expanders

Below we present the machinery developed in [3] and [2]. These concepts provide a convenient way
to analyze a linear system when the underlying matrix is a “good” expander.

Definition 13. Let A be an m x n 0/1-matriz. We denote the i-th row of A by A; and identify it
with the set {j | Ai;j = 1}. The cardinality of this set is denoted by |A;|. We extend the notation
A; to Ar = ;1 Ai for a set of rows I C [m].

There are two notions of expanders: expanders and boundary expanders. The latter notion is
stronger as it requires the existence of unique neighbors. However, every strong expander is also a
good boundary expander.

Definition 14. For a set of rows I C [m] of an m X n matriz A, we define its boundary 941 (or
just OI) as the set of all j € [n] (called boundary elements) such that there ezists exactly one row
i € I that contains j. We say that A is an (r, s,c)-boundary expander if

1. |A;] < s for all i € [m], and
2. VI C[m] (lI| <r = |0I| > c- |I|).
Matriz A is an (r, s, c)-expander if condition 2 is replaced by
2.VIC[m] (I| <r=|A1| > c-|[I]).
It is easy to check that any (r, s, c)-expander is an (r, s,2¢ — s)-boundary expander.

Definition 15 ([4]). Let A € {0,1}"™*". For a set of columns J C [n] define the following inference
relation & ; on the set [m] of rows of A:

I+ = |Il| S’r/2 N 3,4([1) C AU J. (1)

Let the closure CI(J) of J be the set of all rows which can be inferred via ; from the empty
set.

Lemma 16 ([4]). Let A be (r,3,c')-boundary expander. For any set J with |J| < (c'r/2), |CI(J)| <
|J|/¢.

Restrictions and consistency. In what follows the behavior of BT algorithms will be analyzed
with pairs of restrictions (o4, 0y). Intuitively o, corresponds to the current assignment on z and
oy corresponds to the known partial information about b. We regard a set of assigned variables
Vars(o,) as a set of columns J = {j|o,(z;) € {0,1}} and Vars(oy) as a set of rows I = {i|oy(y;) €

{0,1}}.

Definition 17. For a fized matriz A € {0,1}"*™ we call a pair of partial assignments (og,0y)
consistent w.r.t. A if o, can be extended to a global assignment x € {0,1}" and oy may be extended
to b e {0,1}" such that Az =b.

Finally we need the following lemma from [2].

Lemma 18. Let A € {0,1}™*™ be (r,3,c)-boundary expander, b € {0,1}™ and o a restriction on
x and denote I = Cl(Vars(c)). Assume that there exists a solution for the system (Az); = by
that extends o. Then, for any set of rows I' of size < r/2 there ezists a solution of the system
(Ax)p = by that extends o.
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The way one should interpret this lemma, is that in some sense, the most difficult set of equations
to satisfy by a solution extending o is (AT)ci(vars(s)) = bci(vars(o))-

The following theorem provides the existence of good expander matrices that have full rank
over GFy. It is an improvement upon the construction of full rank expanders in [3]. The proof
appears in the appendix.

Theorem 19. For any constant 6 < 2 there exist a constant € > 0 and K > 0 and a family A, of
n X n matrices s.t.

o A, has full rank.
o A, is (en,3,0)-expander.

o Fvery column of A, contains at most K ones.

5.2 Reduction to the backtrack game on a linear system

Our lower bound for BT algorithms comes from a SAT instance corresponding to a linear system
Az = b. Surprisingly, the lower bound uses only the facts that the algorithm does not know b and
that A is expanding and of full rank; in other words, we will analyze algorithms which know A in
advance. In this setting, a successful BT algorithm has a rather limited structure, which we use
when analyzing its behavior. We view the algorithm as playing a game with the object of finding
a solution to Az = b for unknown b. While there are good strategies to win this game quickly, we
show that any BT algorithm is a very bad player.

Definition 20 (backtrack game on a linear system). A strategy P is a function that maps
a pair of partial assignments to a decision to reveal a bit b; or to guess bit z; (i € [m]). For a
given strategy P and a linear system Az = b we define a backtrack game tree Tp(Az = b) in the
following recursive way.

e FEvery node of Tp(Az = b) contains a pair of partial assignments (o3,0,). The assignment oy

y
is always consistent with the value of b. The assignment (0,0y) is always consistent w.r.t.
A.

e The root node contains the empty partial assignments.

e (Revealing move). If v is a node containing the pair (o3,0,) and P(oy,0,) =reveal i then v

has the unique child v' with 0¥ = 0¥, ag’ = oy U {yi = bi}.

o (Guessing move). If v is a node containing pair (c2,0%) and P(o¥, o)) = guess j then denote

. z) Ty Y
gutelt) — oy U {z; = 0}, gorioht) op U{z; = 1}. v will have 0,1 or 2 successors in

accordance with the number of consistent pairs.

Hereafter, let us fix an n X n nondegenerate matrix A which is (r, 3, ¢)-expander that contains
at most K ones in each column with r = Q(n), K = O(1), ¢ > 17/9. The existence of such matrix
is provided by Theorem 19. Thus A is (r, 3, ')-boundary expander for ¢/ = 2¢ — 3. For b a vector
we will treat a linear system Az = b as a 3CNF that results after expressing every linear equation
with 4 clauses in the standard way.

Theorem 21. Let b €y {0,1}". For any BT algorithm A with probability 1 — o(1)



Proof. Assume that b is a uniformly chosen random vector. Then T 4(Az = b) is a random tree the
size of which we need to estimate.

Given a backtrack algorithm A we construct the strategy P4 for the BT game. While it is
difficult to estimate exactly what the algorithm knows about b at any point (mainly because it
may have inferred that some items are not part of the input), the corresponding strategy will stay
ahead of the algorithm in terms of knowledge of b and it will be very easy to track its knowledge
of b. Every node of A is translated into a sequence of steps of P4, and we start with the root node
of T4(Az = b) that is mapped to the root node of Tp, (Ax = b).

Now, let u be a node in T4(Az = b) s.t. the ordering at this point A(ﬁ“,a}z‘,) is a sequence
of items (DY, Dy, ...). Assume that we have defined a mapping of u into a node v in Tp, (Az = b).
Possibly DY is already contradictory with (o¥, Ug) in that it contradicts oy, or it represents a variable
already set in o; in this case we know that DY is not in the input. We therefore assume wlog that
D} is not contradictory. Now, let I be the set of bits associated with the clauses of D}. Notice
that the bits {b;};cr are the ones that determine whether DY is one of the input items associated
with Az = b. Also, since every variable may participate in at most K linear equations, |I| < K.
The BT game now reveals all the currently unrevealed bits {b;}ic;. Let v' be a new node with
0¥ =o? and a;" extends o, on I. At this point we make a data-check that can have the following
two possible outcomes.

e A negative item-check D} contradicts O'Z’ and hence D} is not in the input. In this case
the next data item in the list is considered using the above set of rules.

e A positive item-check D} does not contradict J;/", in which case it might be one of the

input items. The strategy will proceed regardless. Suppose D} = (z;,C1, ..., Cy), and denote
I' = Cl(Vars(o? ) U {j}). If by contains yet unknown bits that are not set in a;" then the
corresponding revealing steps take place so that I’ is exposed in the vertex v”.
After that a guessing move takes place w.r.t. the variable x;. This results in a splitting of
the vertex v into two vertices v'¢/* and v™9" according to the value of zj. The translation
of one step of A in the node u is finished and v'*/*, v"9" are growing according to the two
children of u in T4(Az = b). If either v'®/! or v"9h* contains an inconsistent pair (o,0y)
then the corresponding branch(es) are terminated.

Lemma 22. P4 is a well-defined BT game strategy and there exists an injective function u that
maps guessing nodes of Tp,(aq=p) to nodes of Ta(Az = b).

Proof. The map p is defined recursively in the natural way w.r.t. the execution of A. Further, one
can inductively show the following semantics : at any node u the amount of information known
about b is no more than o}, where v is the corresponding node in the game. This immediately
shows that whenever A aborts one or two possible extensions of the node u, the corresponding node

v in Tp, contains an inconsistent pair (0¥, 0% ), since otherwise any consistent extension of o¥, o}
could be the unique solution and this will lead to a failure of A to solve the problem. O

Lemma 22 says that it is enough to bound the size or width of the tree resulting from the
strategy P4 in order to get a simiar bound to the size/width of A.

Lemma 23. For the strategy P4, all leaf nodes in Tp,(Ax = b) have depth at least r/2.

Proof. Assume for the sake of contradiction that there exists a path of length less than r/2, let v be
the last node on this path. By the definition of BT game strategy v contains a pair of restrictions
(03,0,) that are consistent w.r.t. A. The only possibility of a path being terminated is when a
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new bit b; is revealed and the new pair of restrictions o3, 0y U {y; = b;} is inconsistent with A. Let
I = Cl(Vars(oy))- By the construction of P4, oy gives values to the bits b;. This implies that o7
may be extended to satisfy (Az); = b;. By Lemma 18 o¥ may be extended to satisfy (Az)p = by

for I' = Vars(oy) U {i}. We have a contradiction. O

Definition 24. Assume that T is a tree. A random path w(T) goes from the root to one of the
leaves of T' in the following way. The first node of 7 is the root of T. At every step the next node
in the path is chosen uniformly at random from the set of all children of the current node.

We now consider a random path in the random tree T’p,(Az = b). Our plan is to prove that
w.h.p. this path has a lot of branching nodes (i.e. nodes that have more than one child).

Lemma 25. With probability 1—2=%") (over random choices of b and ), a random path (Tp,(Az =
b)) contains Q(r) guessing nodes with both children present.

Proof. Consider a random path 7 in Tp4(Az = b). By Lemma 23 it has at least r/2 edges. We
first prove that there are Q(r) guessing nodes along this path with high probability. Assume that
there are at most r/4, otherwise we’re done. Let v be the node of 7 at depth r/2, and let t be the
number of item-checks. Our first goal is to show ¢ = Q(r). Tt is enough to show that on average
there are at most a constant number of revealing nodes per item-check (since at least half the nodes
are revealing nodes). There are two types of bits that are revealed. The ones that are associated
to the < K equations associated with the data items, and the ones that are in the closure of the
current partial assignment. Notice that all the revealed bits of the second type are a subset of
Cl(Vars(a?)), as CI(-) is monotone. Notice also that |[Vars(c¥))| < . These two observations,
together with Lemma 16, show that for ¢ < ¢'r/2, |C1(Vars(a?))| < |[Vars(o¥)|/c < t/c'. Putting
it all together, there are (amortized) at most K +1/¢’ revealed bits per each item-check node (unless
t > ¢'r/2 in which case £ = Q(r) anyway), and so £ = Q(r). Next, we need to bound the number of
guessing-nodes; those are exactly the nodes associated with positve item-checks. Denote by M; the
number of items that have been identified as present in the formulas after ¢ item checks. Notice
that since an item-check is positive with probability at least 1/2% the sequence M; — 27Xt is a
submartingale. Applying Azuma’s inequality gives that M; > % -27K{ with probability 1 — 2%,
This implies that w.h.p. the random path contains 2~%#/2 guessing points. Now we need to show
that the number of forced choices (i.e. guessing nodes with one child) is not too big.

Lemma 26 ([3]). Assume that an m X n matriz A is an (r,3,c)-ezpander, X = {z1,...,z,} is a
set of variables, X C X, b € {0,1}™, and L = {l1,...,L} is a tuple of linear equations from the
system Az = b. Denote by L the set of assignments to the variables mX' that can be extended on
X to satisfy L. If L is not empty then it is an affine subspace of {0,1}X of dimension greater than

% 1 14—7
%1 (3 - #%)-

Denote X = Vars(o®) and by £ the set of linear equations in the system (AT)y grs(ot) =
byars(o¥)- By Lemma 26 the space of those partial assignments on X that are consistent with o}

has dimension Q(|X|) = M; > 2 K#/2 = Q(r), this implies that there are at least that many
guessing points with both children present in T4, . O

For a strategy P4 denote by Tlrpﬁ\ 2(A:z: = b) a subtree of Tp, (Az = b) that consists of all nodes
of depth less than or equal r/2.

Lemma 27. With probability 1 — 2~ T;{f contains 22" nodes.
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Proof. By Lemma, 25 with probability 1 —27°" a random path in T;{A ? contains at least er branching
points. By averaging, this implies that

lzr [Pr[w(TAP (Az = b)) contains at most er branching points] > 2*‘”/2] <27%/2,
e

However a simple counting argument shows that if a random path in tree T" has er branching points
with probability 1/2 then T has size at least 2¢ /2 nodes. Indeed, let us give each node v in T an
identifier which is 0 — 1 string of length er that contains the direction on the first er branching
point on the way from the root to v. An identifier is good iff the correponding path that it defines
has at least er branching nodes. There is an injective map from the set of good identifiers to the
set of nodes in T and a randomly chosen identifier is good with probability 1/2. O

We have established that T;i 2 (Az = b) has exponential size w.h.p. By Lemma 22 this immedi-

ately proves Theorem 21.
O

Theorem 21 says that for any SAT BT algorithm A and choosing b uniformly at random,
Wa(Az = b) = 2°U") w.h.p. We do not need much additional work to estimate the depth first size.
Consider the first branching point of T4 (Az = b); it corresponds to the choice of the value of the
first variable z;. Assume that A recommends considering the assignment z; = 0 first. However
with probability 1/2, z; = 1, but the proof of Theorem 21 implies that the subtree corresponding

to z; = 0 has exponential size. Thus with probability 1/2 — o(1), S:f{ = 2Un),

5.3 Free Branching

Here we show that the 3SAT lower bound extends to an even stronger model than fully adaptive
BT. We will need this stronger lower bound below where we prove a lower bound for knapsack in
the fully adaptive model by a reduction from 3SAT.

For any BT problem P over domain D, augment D by including an infinite number of dummy
data items {R;i, Ry, ..., Ry, ...} and let these dummy items be implicitly included in every instance
I. Decisions about these items do not affect the semantics of a solution (they are ignored by fp).
They do, however, allow any fully-adaptive algorithm A for P to branch without making a decision
about the real data items so that it can, in particular, consider multiple orderings on the remainder
of the items (this ability is not useful in fixed or adaptive BT). One can modify and get the following
strengthening of Theorem 12.

Theorem 28. For any fully adaptive BT algorithm with free-branching, A, there exists at least
one b for which W4(Az = b) = 29,

The proof idea is to reduce the free-branching case to the original one. Note, that after intro-
ducing the dummy variables Rj, Ro, ... the solution is not unique anymore, thus we cannot apply
Lemma 22 to a free-branching algorithm. Let us consider a class of possibly incorrect BT algorithms
for SAT that do not necessarily find a solution. For a fixed matrix A we say that A finds a given
vector & € {0,1}" iff it solves the system Az = (AZ).

Definition 29. Given a free-branching algorithm A define a possibly incorrect free-branching algo-
rithm A<t in the following way. Whenever a computational branch of A makes t free-brances cut
this branch.

Let £ = Q(r) be a parameter that we assign later. We may assume that for any b T4 (Az = b)
has size less than 2¢/'0 (otherwise the theorem follows).
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Lemma 30.
Pr[A<Y? finds 2] > 1 — 27410,
T

Proof. The probability that a random leaf in the tree T'4(Az = b) of size less than 2¢/'° has depth
greater than £/2 is bounded as 2 ¢/10, O

Lemma 31. There exists a non-free-branching, possibly incorrect BT algorithm A’ s.t.
Pr[A finds z] > (1 — 274/10)2=4/2,

Proof. Consider the free-branching algorithm A<#2 which finds the solution with probability 1 —
27¢/10 and uses ¢/2 random bits. We may deterministically assign these bits so that the resulting
algorithm finds a solution with probability (1 — 2-¢/2)2-4/2, O

Proposition 32. For every possibly incorrect, non-free-branching BT algorithm A’ there exists a
correct, non-free-branching algorithm A, s.t. for all b Ta(Azx =) is a subtree of T ;(Az =b).

Under our assumption there exists a possibly incorrect, non-free-branching algorithm A’ that
solves the problem with probability at least 27 according to a randomly chosen b. Consider the
corresponding correct BT algorithm A that extends A’ provided by Proposition 32.

Definition 33. For a BT strategy P; and & € {0,1}" and b € {0, 1}" we define a path wi(TIQf(A:c =
b)) in the following way. Denote b = Az. Whenever P; makes a revealing move and reads b; if

b; = b; then continue the path, otherwise abort it. If P; makes a guessing move then the path m;
goes according to the value of .

Proposition 34. Assume that ﬂi(T;f(Aa: = b)) has length r/2 (i.e. it doesnot abort). Then m;

does not depend on b.

Thus for an arbitrary z we may study the path 7, without knowing the specific b. We have
almost finished the proof. Recall that A extends A’, in particular we may regard A’ a heuristic
that aborts some branches of A in some predefined way. Let us call z good iff

o A’ finds z.

e 7, contains er guessing nodes with both children present, where € is the constant provided
by Lemma, 27.

By our assumption on A’, it does not abort with probability greater than 27!, hence there are
at least 2"~¢ zs that satisfy the first condition. By Lemma 27 at most 2"~ zs violate the second
condition. If we assume that £ + 1 < dr we infer that there are at least 2" ¢! good zs. We say
that a given b invokes & iff m; belongs to Tp, (Az = b).

Proposition 35. Assume that & is good. Then for b €y {0,1}", & is invoked by b with probability
9er—r /2.

By averaging argument there exists some b that invokes at least 27 ¢12¢7-7/2 good zs. Let
us check how they occupy the leaves of Tp, (i.e. to what leaf m; comes for good z). Every leaf

may accomodate at most 2"~"/2 good zs, thus there should be at least 2¢7 ¢! leaves occupied. A’
cannot terminate a branch that leads to an occupied leaf. Choosing £ = er/2 we infer that T,

contains 2°(") branches not terminated by A’. This proves that W4(Az = b) > 27,
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5.4 BT Reductions

Given the 3SAT lower bounds in Theorem 28 and utilizing an appropriate reduction from 3SAT
to the SUBSET-SUM search problem, we obtain the same exponential lower bounds for SUBSET-
SUM and hence for the simple knapsack problem.

Theorem 36. Any fully adaptive BT algorithm for simple knapsack on n items requires width and
depth-first size 24"

Proof. The theorem follows from the standard polytime reduction (see, for example, [11]) from
3SAT to SUBSET-SUM which turns out to be a “BT-reduction”. Let (z;,C1,...,C)) be a variable
item in the weak or strong data type. Given m 3-clauses on n variables, the reduction creates
a set of n' = 2n + 2m base-6 numbers each with n + m digits. Namely, for each propositional
variable, the reduction creates two knapack items (one correspnding to positive occurences and
one to negative occurences of the variable) and two knapsack items corresponding to each clause.
(These clause items will correspond to dummy variables in the SAT domain.) Any BT algorithm
(with or without free choices) for solving the knapsack problem will induce a BT algorithm (with
free choices) for solving 3SAT. Namely, any decision on either of the literal knapsack items for a
particular variable gives us a decision for that variable because an optimal solution to knapsack is
one in which exactly one of the items corresponding to positive and negative literals must be taken.
For a node in a path of a BT tree that represents the first time an item of that variable appears,
we convert the decision to a corresponding truth value for that variable. For the second occurrence
in a branch of an item corresponding to a certain variable, we extend the branch (if possible) only
where the decision is consistent. Decisions for the clause items will correspond to free decisions.
We emphasize that the ordering for the 3SAT instance is well defined and any optimal solution to
knapsack (ie one that achieves the target) is a branch that is converted to a branch representing a
solution for the 3SAT formula. O

Given the specific example above, it is not difficult to define the concept of a BT-reduction
between problems which will preserve the property of being efficienlty computable by a BT al-
gorithm. Intuitively, the main criterion of such a reduction is that it establish a correspondence
between items in an instance of the first problem and items in the induced instance of the second
problem. In other words, it should be very local. We then need a way to map the decisions of the
second problem back to decisions for the first problem. One could formalize this notion at various
levels of generality. In order to avoid unnecessary details, we simply say that a problem P; reduces
to problem P, if there is a mapping g from the items of P; to sets of items in P, and a mapping
f from decisions on an item in P, to decisions in P;. We can order D; given an ordering on Dy
provided that the Dy-subsets corresponding to different items for P, are disjoint. Then, given any
decision on the first item in one of these subsets, we use f to decide about the corresponding D,
item. Given a tree in P;, the above setting allows us to define an associated tree in P;. Finally,
for the reduction to work, we have to require that those branches of the tree of P, that represent
a solution (optimal solution in the case of optimization problem) can be associated with solution
branches in the corresponding tree in P;. The one additional point is that, if the induced instance
of P, contains items that don’t correspond to any particular P;-item (as is the case with the clause
items above), then we need to introduce dummy items into P;’s computation.

The following definition and proposition formalize the above intuition.

Definition 37. Let P, = (D1,{f'}) and P» = (D2, {f3}) be two BT problems that use choices K;
and Ky, respectively. A BT-reduction from P to Py consists of the following:
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e A function g} : D1 — P(D2), such that for any two distinct D, D' € Dy, g} (D) N g} (D') = 0.
o A function g : Dy x Ko = K;.

o A set of items E™ = {E},...,E"

m=m(n

) € Dy} that are not in the image of g}.

These objects must satisfy the following property: for any I = {D1,...,Dp} C Dy, let g7(I) C
Dy denote the union of all images of the items in I under g7. Let o : g7 (I) — Ko be any assignment
of decisions to these items. Finally, for each D;, let D} be any item in g}(D;). Then,

fln(DlaaDnagg(Dllaa(Di))aagg(D;wa(D;L))) =1
if and only if
1,...,bm € Ky [ (g0(), E},...,E",a(I),bi,... by) = 1.

(We abuse notation slightly in the last line by making g7 (I) and a(I) vectors). The number n' is
the number of items in the Py instance: |g7(I)| +m(n).

Often we drop the n superscript for ease of notation.

Proposition 38. Given two BT problems P, = (D1,{f{'}) and Py = (D2,{f3}), if there is a
fully-adaptive-with-free-branching BT-algorithm A for Py and a BT-reduction from Py to P, then
there is a fully-adaptive-with-free-branching BT-algorithm B for Py such that Wg(n) < Wu(n'),
S¥(n) < 8Y(n') and SY (n) < 8% (n").

Proof. Given any instance I = (Dy,...,D,) of P;, we construct a computation tree Tp(I) that is
isomorphic to the tree T)4(I"), where I' = g1(I) U €. This will partially define rg and c¢g. For the
remainder of the domains of these functions, they may return anything.

We will introduce dummy items into the computation of B so that there will be a bijection
between B’s items and A’s items. Let g} be a function from Dy U{R1, Rz, ...} to D2U{R,R),...}
as follows: for each Z € D; pick an arbitrary Z' € g1(D;) and let ¢{(Z) = Z'. For every other
item in g1 (Z) pick a unique dummy element to be its preimage under gj. Then, extend g} so that
it includes a 1-1 correspondence from some of the remaining unused dummy items to £. Finally,
extend g} so that it includes a 1-1 correspondence between the remaining dummy items of P; to
the dummy items of P;.

The root of Ti corresponds to the root of T4. In general, assume we have a node v of T that
corresponds to a node u of T4. Let (D%, @") be the label of u and let (D?,a") be the label of v.
Then, since we have an injection g} : D1 U{Ry,...} — Dy U{R],...}, the ordering rA(ﬁu,&'“)
induces an ordering on Dy U {Ry,...}. Let TB(BU,EU) output this induced ordering. Now v
sees the first item, Z, in I U {Ry,...} minus the elements of D according to the ordering. Let
(bi,...,bg, L,...) be the ordering returned by c4(D*, Z' = ¢} (Z),@"). Define cg(D", Z,a") as the
tuple (g2(Z',b1),...,92(Z',b4)). This establishes a correspondence between the children of u and
the children of v.

The definition of reduction guarantees that any path in Tp that corresponds to a path con-
stituting a solution in T4 is itself a solution. Hence Wpg(n) < Wu(m), ng (n) < Sf{(m) and
Sy (n) < 8% (m). O
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6 Interval scheduling

Interval selection is the classical problem of selecting, among a set of intervals associated with
profits, a subset of pairwise disjoint intervals so as to maximize their total profits. This can be
thought of as scheduling a set of jobs with time-intervals on one machine. When there is more than
one machine the task is to schedule jobs to machines so that the jobs scheduled on any particular
machine are disjoint; here too, the goal is to maximize the overall profit of the scheduled jobs.

When all the profits are the same, a straight-forward greedy algorithm (in the sense of [8])
solves the problem. For arbitrary profits the problem is solvable by a simple dynamic programming
algorithm of dimension m, and hence runtime O(n™). The way to do this is to order intervals
in increasing order of their finishing points, and then compute an m-dimensional table 7" where
T[i1,%2,%3, - - ,im) is the maximum profit possible when no intervals later (in the ordering) than i,
are scheduled to machine j; it is not hard to see that entries in this table can be computed by a
simple function of the previous entries.

As mentioned earlier, such an algorithm gives rise to an O(n™)-width, fixed-order BT algo-
rithm. A completely different approach that uses flows achieves a running time of O(n?logn) ([6]).
An obvious question, then, is whether Dynamic Programming, which might seem like the natural
approach, is really inferior to other approaches. Perhaps it is the case that there is a more sophisti-
cated way to get a Dynamic Programming algorithm that achieves a running time which is at least
as good as the flow algorithm. In this section we prove that there is no better simple Dynamic
Programming algorithm than the obvious one, and, however elegant, the DP approach is inferior
here.

It has been shown in [8] that there is no constant approximation ratio using priority algorithms.
Our main result in this section is to show that any adaptive BT, even for the special case of
proportional profit interval scheduling, requires width Q(n™); thus in particular any simple-DP
algorithm requires at least m dimensions. We will first present lower bounds in the fixed model
where we have constant inapproximability results, and then we will prove lower bounds for the
adaptive case, which is considerably more involved.

6.1 Interval Scheduling in the Fixed Model

Theorem 39. A width v < (%) fized-ordering BT for interval scheduling with proportional profit
on m machines and n intervals cannot achieve a better approrimation ratio than 1+0— 5 L

T D)
for any 6 > 0.

Proof. We begin with the special case of m = 1. The set of possible inputs are intervals in [0, 1] of
the form [a/W,b/W] where a, b are integers and W is a function of v which will be fixed later. We
start with some definitions.

A set of three intervals of the form [0, q],[g, s],[s,1], 0 < ¢ < s < 1, is called a complete triplet.
An interval of the form [0, ¢ is called a zero interval, and an interval of the form [b,1] is called a
one interval. Let L be the set of zero-intervals whose right endpoint is at most %, and let R be
the set of one-intervals whose left endpoint is at least % We say that a set of complete triplets is
unsettled with respect to an ordering of all of the underlying intervals if either all zero-intervals are
before all one-intervals, or vice versa.

We notice that for any ordering of the above intervals and for every ¢ such that W > 2(2¢t — 1),
there is a set of ¢ complete triplets which is unsettled. Let S be the sequence induced by the
ordering on L U R. Each of L and R has size 2t — 1. If we look at the first 2¢ — 1 elements of S, the
majority of them are (wlog) from L. Select ¢ of these L-intervals and select ¢ R-intervals from the
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last 2t — 1 elements of S and match the two sets in any way such that if [0, 1] and [3, 1] are both
selected, then they are matched to each other. This matching, along with the ¢ distinct middle
intervals (one of which may be empty) needed to connect each pair of the matching, constitutes a
set of ¢ unsettled complete triplets.

Now, consider a BT program of width v < (n —1)/2 and let W = 2(2y + 1) so as to guarantee
there are v 4+ 1 unsettled complete triplets. Throw out all intervals not involved in these triplets.
Assume wlog that all of the zero-intervals come before the one-intervals. Since no two intervals can
be accepted simultaneously, and since the width is y, there is a zero-interval that is not accepted on
any path. The adversary will remove all one intervals except the one belonging to the same triplet as
the missing zero interval. With this input it is easy to get a solution with profit 1 by simply picking
the complete triplet. But with the decisions made thus far it is obviously impossible to get such a
profit, and since the next best solution has profit at most 1—1/W, we can bound the approximation
ratio. This is not quite enough, however, since here we have only 2(y+ 1) + 1, rather than n, input
items. To handle this we include in the set of input items n — (2(y + 1) + 1) v“dummy” intervals
of length §/n for arbitrarily small §. These dummy intervals can contribute at most § to the non
optimal solution, which gives an inapproximation bound of 1 4+6 —1/W =1+ —1/2(2y + 1) for
any 0 > 0.

The same approach as above works for m > 1 machines. That is, if W is large enough so that
we have t unsettled triplets, then v must be at least (;l) in order to get optimality. Therefore,
given width +, let ¢ be minimal such that v < (;l) Then we achieve profit at most m — 1/W
(orm+ 0 —1/W if we add n — (2t + 1) dummy intervals) and our approximation ratio is at most
mAS=UW < 1 45— 1/(2m(2t + 1)) ~ 1406 — 1/2m(2ym + 1). 0

Remark 2. As in Theorem 7, the proof of Theorem 39 can also be extended so as to allow revocable
acceptances. Setting v =1 and m = 1 in Theorem 39 slightly improves an inapprozimation bound
of [20] although the bound in [20] applies to adaptive orderings.

6.2 Interval Scheduling in the Adaptive Model

The following theorem shows that adaptivity still does not allow a BT algorithm to get a substantial
reduction in width compared to the Simple DP setting. Specifically we show that for a constant
number of machines m, Q(n™) width is required to solve the problem exactly. However, it is
quite clear that the way to achieve a lower bound must change dramatically. We cannot hope,
for example, to get a superconstant lower bound if the adversary offers an input which contains a
set of three intervals covering [0, 1], as is the case with the lower bound of the Theorem 39. This
intuitively leads to a setting in which the intervals are small, so as to necessitate a large set of
intervals in any optimal solution.

Before we turn to the lower bound we show that an adaptive BT algorithm of width 2 supplies
a better approximation than priority algorithms (width 1); namely we get an approximation ratio
of 1/2, which beats the tight approximation result for priority algorithms of 1/3.

Theorem 40. In interval scheduling with 1 machine, a width 2 adaptive BT guarantees an approz-
imation ratio of 1/2.

Proof. We take an ordering resembling the 2-CHAIN ordering of intervals discussed in [8]. We start
with the left-most interval in terms of the start time. Next, among the intervals intersecting the
most recent interval, [s, ], we take an interval [, ¢'] with ¢’ > ¢ and ¢’ maximal. If there is no such
interval, we choose the interval with smallest start point s’ > ¢. If there is no such interval we take
an arbitrary ordering of the remaining intervals. The resulting ordering is depicted in Figure 1. It
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Figure 1: ordering adaptively to get 2 approximation factor for width-2 BT. Only bold and dashed
intervals are credited to the BT algorithm.

is clear that up to the point where we take the arbitrary ordering, the odd intervals are disjoint
from each other, and so are the even. Moreover the remaining intervals are contained in the union
of the intervals already seen. Therefore, our algorithm considers exactly two possible solutions: the
set of even intervals and the set of odd intervals. One of these must achieve approximation ratio
at least 1/2. O

Theorem 41. The width of an optimal adaptive BT for interval scheduling with proportional profits
on m machines and n intervals is (Q(%m)).

Proof. The set of data items are the intervals of size at most 1/n in [0,1] with endpoints of the
form /W for any W > mn?. We will associate a graph with the set of revealed intervals, where
the endpoints of the intervals are vertices in the graph, and the intervals themselves are the edges.
We also define a point 7 to be zero connected (one connected) if r is connected to 0 (respectively, 1)
in the graph by edges going left (right). An interval is zero (one) connected if both its endpoints
are zero (one) connected; it is generic if neither of its endpoints are.

The adversary applies the following two rules for eliminating intervals for n — 1 phases (until
n — 1 intervals have been revealed). Initially, we have a set V' = {0,1}. Throughout the algorithm’s
progress, we will add to V' the endpoints of the revealed intervals. At each stage,

1. Cancel all unseen intervals both of whose endpoints are in V.

2. Cancel all intervals ending (starting) in r if r is zero connected (one connected) and we have
already seen 2 intervals ending (starting) in r.

We denote by P; the set of revealed intervals after i phases of the game. Clearly |P;| = i. We
are interested in P = P, 1, the set of n — 1 revealed intervals at the end of the game. The union
of all intervals in P is strictly contained in [0, 1] as all intervals are of length at most 1/n. Notice
that the graph associated with P is acyclic because each interval contributes at least one endpoint
not previously seen. Further, when an interval is revealed, it is either generic and stays that way,
or it is zero (one) connected.

Let Cy be the set of zero connected intervals in P and let C7 be the set of all one connected
intervals in P and let G be the remaining intervals in P. Note that since P does not cover the
entire interval, no point/interval can be both zero and one connected, and thus every interval in P
lies in at most one of the sets G, Cy, C;.

We will now define three types of indispensable partial solutions, those that involve only generic
intervals, those that involve only zero connected intervals, and those that involve only one connected
intervals. We will argue that there must be a large number of indispensable solutions of at least
one of the three types.

A set of m generic intervals S = {I1,Is,...,I,} C G is indispensable (with respect to P) if
there is a valid set of future inputs Fg that extends S to a complete solution, but does not extend
any other S’ C P to a complete solution.
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Figure 2: {I} is indispensable

Claim 42. All choices of S = {I1,I5,...,I,} C G of generic intervals are indispensable. Moreover,
|F's| = O(mn).

Proof. (of Claim 42) Let I; = [sj,7;], j = 1,...m be the generic intervals. For each j, we take F}
to be a set of intervals each of length at least % that together with I; cover (with no overlaps) the
interval [0, 1]. Further, they avoid all edge points underlying P and Fi, ..., F;_; except for s; and
r; (it’s not hard to see that this is possible given that W > 5mn?). Let Fg = U;F;. Clearly Fis has
size at most 2mn. If we accept exactly I; and F; on machine j, we get a complete solution. We
argue that there is no complete solution other than this one (modulo permutations of the machines)
over P U Fg. Since P involves n — 1 intervals, each of length at most 1/n, there must be some gap
J that is not covered by anything in P. To get a complete solution, each machine must accept
an interval overlapping J; let’s say some machine schedules ¢ € F;. How can we get a complete
solution for this machine? Assume wlog that I; lies to the left of J. Clearly, the machine must
schedule all intervals of F; lying to the right of ;. Further, since r; is not zero-connected, the only
way to connect r; to zero is via I; and the left intervals of F;. The same holds for each of the
machines. O

We will now discuss the zero connected case. The one connected case is analogous. A partial
solution of intervals to machines is projected to a multiset of m points by taking the rightmost
points covered by each machine. For example, if intervals {[.2,.4], .5, .6]} are scheduled on machine
1, and interval {[0,.45]} is scheduled on machine 2, then this solution projects to R = {.6,.45} A
multiset R of zero connected points/intervals is indispensable if for some partial solution p defined
on P that projects to R, there is a set of future inputs, Fg, that extends p to an optimal solution,
but does not extend any solution that does not project to R. We think of the projection operation
as defining an equivalence relation over all partial solutions, and we will show that each equivalence
class induced by this relation is indispensable. This implies that at least one partial solution from
each class must be maintained by the algorithm, and thus we will show a lower bound equal to the
number of equivalence classes.

Claim 43. Every independent set R = {r1,r2,..,mm} C Coy of zero connected points/intervals is
indispensable. Moreover |Fr| = O(mn). Similarly, every independent set L = {l1,ls,...,ln} C C;
of one connected points/intervals is indispensable, and |Fr| = O(mn).

Proof. (of Claim 43) Let R = {r1,r2,...,rm} C Cp and assume wlog that r; < ro < r3.... Also
assume that R is an independent set, namely no interval [r;,r;] appears in P. To define Fg, we
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Figure 3: (r1,72) are indispensable

first take paths ° 7, starting from 1 and ending at r; while avoiding all existing edge-points of P
except 1 and r; (see figure 3). This is easy to do, as there are no restrictions as a result from the
adversary rules at the first phase (the only thing to notice is that r; cannot be one-connected). As
before we can make sure that there are only O(mn) intervals in those paths by insisting that the
path contain edges of size Q2(1/n).

We now present a set of edge disjoint paths 7y, ..., 7, from r; to 0 as follows. We will start by
defining 7,,. Its first edge is the unique zero-connected interval ending at 7, call it [s,,, 7, ]. Now
consider the set of edges in P going left from s,,. There are at most two of them, one of them, call
it [Sm1, Sm) which is part of the zero-connected chain containing the point r,,, and possibly another
free interval with right endpoint s,,, call it [s;,2, $,] which is not zero connected. We know that
it’s not zero connected because there are no cycles in the underlying graph. If the free interval is
in P, then we use it in extending m,, to the left, and otherwise, we add a new interval [s,,,, ;] to
the future set of inputs. In either case, the interval [s,,,, $;n] extends 7, the left. Now we proceed
as in Claim 42, and extend =, to the left all the way to zero, by adding future intervals each of
length at least 1/2n, avoiding all edge points of P along the way. The other 7;’s, i =1,...,m —1
are defined similarly. Let F; denote the set of intervals added to P to obtain «; and 7;, and let @;
denote the intervals in 7; U 7; that are in P. Let Fr = U;F; denote the set of all future intervals
added.

Having constructed 7; and w; we need to show that R is indispensable with respect to Fg.
For each i, we defined a complete coverage of the [0,1] interval by the path «; U 7;, made up of
intervals from @); C P, and F;. It is easy to see that the partial solution obtained by accepting the
intervals in ); on machine 7, and rejecting all other intervals in P is contained in the equivalence
class defined by R. Further, this partial solution can be extended to a complete solution within Fg
(by the v;’s and the ;’s).

It remains to show the converse; namely, that any partial solution in P that can be extended
to a complete solution projects to R. We must take (wlog) the intervals of ; on machine i. But
since there are no future intervals extending from r; to the left, the only way to get to a complete
solution is to take intervals from P which shows the desired property of the solution. O

We can now complete the proof of our theorem. Let |G| =g, |Co| = ¢p and |Ci| = ¢1. We will
first argue that one of g, ¢y or ¢; is at least (n — 1)/6. Whenever an interval [s,r] in P is revealed,
it must be in G, Cj or C; unless one of the following two cases occurs: (i) r is zero connected but
s is not, or (ii) s is one connected, but r is not. Case (i) can occur only once for each revealed
member of Cj (since each zero connected point can have at most two intervals going left due to
the elimination rules), and case (ii) can occur only once for each revealed member of C;. Hence,
g+ 2¢o + 2¢; > n, so one of them is at least (n —1)/6. If g > (n — 1)/6, then from Claim 42, we
need (7) = (QT(:;)) active solutions after the first n — 1 rounds. Otherwise, if ¢y > (n — 1)/3, then

Staking a path means taking the intervals induced by the path
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since we are dealing with acyclic graphs, we can extract an independent set from Cj of size at least
|Col/2 > (n — 1)/12. Thus by Claim 43, we need to maintain all the possible projections of this
set onto the m machines. There are (QT(:)) of these. Again the one connected case is analogous.

Since the number of input intervals altogether is N < O(mn), we get a lower bound of (Q(]x{ m)),
expressed in terms of the input size V. O

7 Open Questions

There are many open questions regarding our BT models. Could we show, for example, that the
known greedy 2 — o(1) approximation algorithms for vertex cover are the best we can do using a
polynomial width BT algorithm? This is particularly interesting due to the lack of tight complexity-
bound inapproximation results for vertex cover (see [7]). For interval scheduling, can the adaptive
BT lower bound be extended to the fully adaptive model. For proportional profit on one machine,
we are able to show that a width-2 adaptive BT can achieve a better approximation ratio than a
priority algorithm. While we know that for one machine, an optimal solution requires width Q(n),
the tradeoff between width and the approximation ratio is not at all understood. For example, what
is the best approximation ratio for a width-3 BT? We also do not know if a O(1)-width adaptive
BT can achieve an O(1)-approximation ratio for interval scheduling with arbitrary profits. Also for
any of the problems already studied in the priority framework (eg [8, 15, 5]) it would be interesting
to consider constant width BT algorithms.

Will the BT framework lead us to new algorithms (or at least modified interpretations of old
algorithms)? Small examples in this direction are the width-2 approximation for interval selection,
the linear-width algorithm for 2SAT and the FPTAS for knapsack presented in this paper.

Finally, while we have shown that the BT model has strong connections to dynamic program-
ming and backtracking, can it be extended to capture other common algorithms? For exam-
ple, we show that BT captures simple dynamic programming (where we consider the input items
one-by-one), but what about other dynamic programming algorithms, such as the longest-common-
subsequence or string alignment algorithm? Also, it seems natural to augment BT with randomness:
each decision would be taken with a certain probability and one would study tradeoffs between the
expected width and the probability of obtaining a solution. Finally, [14] recently defined a model
that enhances BT by making use of memoizing. How much can this improve on the complexity of
BT algorithms?
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9 Appendix

Proof. (of Theorem 19) We use the probabilistic method that gives a good source of expanders.
There are two subtle points here, the maximal number of ones in a column and the rank of the
resulting matrix. We handle the former issue using the trick from [2] and the latter by the techniques
from [3].

Lemma 44 ([3]). Let L be a linear subspace of {0,1}" of codimension k. Let the vector v be
random vector in {0,1}" with weight 3. Then Pr[v ¢ L] = Q(£).

n
Assume that n is an integer and c is a constant slightly bigger than 4, say ¢ = § + (2 — d)/2.
Let K be a large constant the exact value of which will be determined later. Consider the random
matrix A, that contains Kn rows, each of which is chosen uniformly at random from the set of all
rows of weight 3.

Proposition 45. With probability 1 — o(1) rk(An) > (1 — e ?X))n,

Proof. The proof resembles the analysis of the well-known Coupon Collector puzzle. Consider the
process of generating the rows of A, let A® be the matrix consisting of the first ¢ rows of A, thus
A = AK7l By Lemma 44 it takes on average O(n/(n — k)) new rows to increase the rank of A*
from k to k + 1. Thus, in order to achieve the rank (1 — e~¥)n on average one has to take

(1—e~K)n

r=0 Z nﬁk
k=1

randomly chosen rows. It is left to notice that

(1—e=E)n n—1
Yo -k = > 1k=K+0(1)
k=1 k=(e~K)n
]
The following well known fact states that a random matrix is a good expander.
Lemma 46. With probability 1 — o(1) A, is (r,3,c)-expander for r = o (ﬁ) .
Denote by 7 = rk(A,). By Proposition 45 7 > (1 —e~%%))n. One may remove at most 2~2(K)p,

columns from A, so that the resulting (Kn) X 7 matrix has rank 7. Denote by J; the index set
of these columns. Denote by J; the index set of the columns that contain at least 2% (n/r) ones.
Since A, has overall Kn ones |J;| < (¢ — 8)r/3. Denote by K = 2Kn/r, note that it is still a
constant. If we remove from A all the columns corresponding to J; U J2 then the resulting matrix
has the full rank and every column has at most K ones. The only problem is that it may not be
an expander anymore. To fix this we use the peeling procedure developed in [3].

Definition 47 ([3]). For an A € {0,1}"™*" and a subset of its columns J C [n] we define an
inference relation % on the set of [m] rows of A:

IS L =01 <r/2 A [ 4\
i€l

GRACME J(t)] <ol 2

i€l

Given a set of rows I and a set of columns J consider the following cleaning step:
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o If there exists a nonempty subset of rows Iy such that 1 l—‘} Iy, then

— Add I, to I.

— Remowe all rows corresponding to I from A.

Repeat the cleaning step as long as it is applicable. Fiz any particular order on the sets to
exclude ambiguity, initialize I = () and denote the resulting content of I at the end by CI¢(J).

Proposition 48. For A € {0,1}™*" a matriz with 3 ones in each row and J C [n] denote
J = UCle(J) A; and I = CI¢(J). Let A be the matriz that results from A after removing the columns

J and the rows I. Then A is (r/2,3,6)-expander.

Lemma 49. If |J| < (c—68)r/2, then |CI°(J)| < 2(c—0)~Y|J| no matter in what order have cleaning
steps taken place.

Proof. Assume that |C1°(J)| > 2(c — §)~!|J|. Consider the sequence Iy, Is, ..., I; appearing in the
cleaning procedure; i.e.,
Ju |J  Aitale
1el1UlU.. .Ul

Note that I; N I; = () for 4 # i’, because we remove the implied set of rows from A at each cleaning
step. Denote C; = |J;_, I. Let T be the first ¢ such that |C;| > (c — §)!|J|. Note that |C7| < r.
Because of the expansion properties of A, |;cq, 4il > ¢|[Cr|, which implies

| U 4i\J| > dCr| - |J| > ¢Crl/2. (3)

1eCr

On the other hand, every time we add some I;;1 to Cy during the cleaning procedure, only
6|Ty41| new elements can be added to ;e Ai \ J (of those elements that have never been there
before). This implies

| U Ai\J<dlCrl,
teCr

which contradicts (3). O

We are ready to finish the theorem. Choose K large enough so that |J; U J2| < (¢ — d)r/2.
Denote by
J= U 4, I=Crhulh).
i€CIe(J1UT2)

By Lemma 49 |j | < r. If we remove all columns corresponding to J from A then the resulting
matrix A’ has the full rank. This is because after we remove the columns corresponding to J; we
get the matrix in which all columns are linearly independent, thus after the removal of J the matrix
still has the full rank. Let us choose any 7 linearly independent rows of A" and denote the resulting
matrix by A. The latter is a nondegenerate 7 X 7 matrix moreover it doesnot contain any rows from
I (because the latter are empty). By Proposition 48 this implies that Ais (r/2,3,0)-expander. [
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