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Abstract. We present a simple randomized construction of size O(n®)
and depth 5.3log n+ O(1) monotone circuits for the majority function on
n variables. This result can be viewed as a reduction in the size and a
partial derandomization of Valiant’s construction of an O(n®®) monotone
formula, [15]. On the other hand, compared with the deterministic mono-
tone circuit obtained from the sorting network of Ajtai, Komlés, and Sze-
merédi [1], our circuit is much simpler and has depth O(log n) with a small
constant. The techniques used in our construction incorporate fairly re-
cent results showing that expansion yields performance guarantee for the
belief propagation message passing algorithms for decoding low-density
parity-check (LDPC) codes, [3]. As part of the construction, we obtain
optimal-depth linear-size monotone circuits for the promise version of the
problem, where the number of 1’s in the input is promised to be either
less than one third, or greater than two thirds. We also extend these im-
provements to general threshold functions. At last, we show that the size
can be further reduced at the expense of increased depth, and obtain a

circuit for the majority of size and depth about n'*v2 and 9.91og n.

1 Introduction

The complexity of monotone formulas/circuits for the majority function is a fas-
cinating, albeit perplexing, problem in theoretical computer science. Without the
monotonicity restriction, majority can be solved with simple linear-size circuits
of depth O(logn), where the best known depth (over binary AND, OR, NOT
gates) is 4.95logn + O(1) [12]. There are two fundamental algorithms for the ma-
jority function that achieve logarithmic depth. The first is a beautiful construc-
tion obtained by Valiant in 1984 [15] that achieves monotone formulas of depth
5.3logn + O(1) and size O(n®3). The second algorithm is obtained from the cele-
brated sorting network constructed in 1983 by Ajtai, Komlds, and Szemerédi [1].
Restricting to binary inputs and taking the middle output bit (median), reduces
this network to a monotone circuit for the majority function of depth K logn
and size O(nlogn). The advantage of the AKS sorting network for majority is
that it is a completely uniform construction of small size. On the negative side, its
proof is quite complicated and more importantly, the constant K is huge: the best
known constant K is about 5000 [11], and as observed by Paterson, Pippenger,
and Zwick [12], this constant is important. Further converting the circuit to a
formula yields a monotone formula of size O(n*), which is roughly n°°%.
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In order to argue about a quality of a solution to the problem, one should
be precise about the different resources and the tradeoffs between them. We care
about the depth, the size, the number of random bits for a randomized construc-
tion, and formula vs circuit question. Finally, the conceptual simplicity of both the
algorithm and the correctness proof is also an important goal. Getting the best
depth-size tradeoffs is perhaps the most sought after goal around this classical
question, while achieving uniformity comes next.

An interesting aspect of the problem is the natural way it splits into two sub-
problems, the solution to which gives a solution to the original problem. Problem
I takes as input an arbitrary n-bit binary vector, and outputs an m-bit vector. If
the input vector has a majority of 1’s, then the output vector has at least a 2/3
fraction of 1’s, and if the input vector does not have a majority of 1’s, then the
output vector has at most a 1/3 fraction of 1’s. Problem II is a promise problem
that takes the m-bit output of problem I as its input. The output of Problem II
is a single bit that is 1 if the input has at least a 2/3 fraction of 1’s, and is a 0
if the input has at most a 1/3 fraction of 1’s. Obviously the composition of these
two functions solves the original majority problem.

There are several reasons to consider monotone circuits that are constructed

via this two-phase approach. First, Valiant’s analysis uses this viewpoint. Bop-
pana’s later work [2] actually lower bounds each of these subproblems separately
(although failing to provide lower bound for the entire problem). Finally, the sec-
ond subproblem is of interest in its own right. Problem II can be viewed as an
approximate counting problem, and thus plays an important role in many areas
of theoretical computer science. Non monotone circuits for this promise problem
have been widely studied.
Results: The contribution of the current work is primarily in obtaining a new
and simple construction of monotone circuits for the majority function of depth
5.3logn and size O(n?), hence significantly reducing the size of Valiant’s formula
while not compromising at all the depth parameter.

Further, for subproblem II as defined above, we supply a construction of a
circuit size that is of a linear size, but does not compromise the depth compared
to Valiant’s solution. A very appealing feature of this construction is that it is
uniform, conditioned on a reasonable assumption about the existence of good
enough expander graphs. To this end we introduce a connection between this
circuit complexity question and another domain, namely message passing algo-
rithms. The depth we achieve for the promise problem nearly matches the 1954
lower bound of Moore and Shannon [10].

Finally, we show how to generalize our solution to a general threshold function,
and explore the tradeoffs between the different resources we use; specifically, we
show that by allowing for a depth of roughly twice that of Valiant’s construction,
we may get a circuit of size O(n!TVZ+o(l)) = O(n242).

Techniques: In obtaining our result we introduce the concept of deterministic
amplification, replacing the probabilistic amplification used by Valiant. In prob-
abilistic amplification, given a monotone boolean function f : {0,1}" — {0,1},
one considers the probability Af(p) that f is one when the n input variables are
independently one with probability p. We say that f probabilistically amplifies
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(p1,pn) to (qi,qn) if Af(p) < q and Af(py) > qn. We say that a monotone func-
tion f : {0,1}" — {0,1}™ deterministically amplifies (p;, pr) to (i, qn) if for every
input with up to pyn (at least ppn) ones the proportion of ones in the output is
at most ¢; (at least gy).

With this terminology splitting the problem into the two subproblems men-
tioned above can be easily described. We seek two function f; and fo so that
f1:{0,1}" — {0,1}" deterministically amplifies (1/2 —1/n,1/2) to (4,1 —§) for
some small constant § > 0, and f, : {0,1}" — {0,1} deterministically amplifies
(6,1—90) to (0,1). In the sequel, we will call the problem of constructing f; phase I
and that of constructing f> phase II.

Our circuit for phase I is quite simple. Starting with the n input variables at
level zero, we have alternating layers of AND/OR, gates, where each gate inde-
pendently chooses its two inputs from the previous layer. We prove that such a
circuit satisfies the requirements if the number of layers is 3.3logn, and if the
layers are sufficiently large (width decreasing with depth from O(n?) to O(n)).

We give two constructions of circuits for phase II. Both constructions yield
circuits for fo : {0,1}™ — {0,1} of size O(m) and depth (2 + €) - logm + O(1),
for arbitrarily small € > 0, almost matching the depth lower bound of 2logdm
of Moore-Shannon [10]. The first construction is a probabilistic argument similar
to our phase I construction but with different parameters. In it we explore the
somewhat surprising benefits gained when changing the fanin of the gates to a
large enough parameter d.

In the second construction we derandomize our construction using good ex-
pander graphs. The construction is an application of a well-known message-
passing belief-propagation algorithm on an expander graph. To compute the
promise problem, we simulate a logarithmic number of rounds of the message-
passing algorithm on a d-regular bipartite graph that is a sufficiently good ex-
pander. The message passing algorithm is similar to the belief propagation algo-
rithm used to decode LDPC codes on the erasure channel, and the analysis is
based on adaptation of a result of Burshtein and Miller [3] to our setting. For
the construction to be completely uniform, we must assume the existence of an
explicit construction of sufficiently good expanders. While not known to date,
finding such expanders is the focus of a rapidly developing research area, which
hopefully will produce the required good expanders.

One crucial parameter used in our analysis, is the number of different inputs
the circuit must handle. It is appealing from a computational point of view, as
it gives a progress measure toward the final goal of the circuit. One interesting
aspect of our probabilistic construction is that it can translate an improvement
in this parameter into a reduction in the circuit size. We obtain a variant to our
construction by exploiting this property. This variant, has a preprocessing stage
that partially sorts its input, and consequently has a smaller size, at the expense
of an increased depth.

The organization of the rest of the paper is as follows. In Section 2, we define
the two notions of amplification that we will be considering, and review Valiant’s
argument. In Section 3, we present our new monotone circuits for majority. In
Section 4, we adapt our construction to obtain efficient monotone circuits for all
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threshold functions. In Section 5, we obtain smaller size monotone circuits for the
majority, at the expense of increasing the depth. In the last section, we discuss
the known lower bounds, and open problems.

2 Notions of Amplification

For a monotone boolean function H on k inputs, we define its amplification func-
tion Ay :[0,1] — [0,1] as Ay (p) = Pr[H(X1,...,Xs) = 1], where X; are inde-
pendent boolean random variables that are one with probability p. Valiant [15],
considered the function H on four variables, which is the OR of two AND gates,
H(xy,%2,%3,24) = (x1 A x2) V (z3 A 24). The amplification function of H, de-
picted in Figure 1, is Ag(p) = 1 — (1 — p?)?, and has a non-trivial fixed point at
B=(V/5-1)/2~0.61.

0 0.2 0.4 0.6 0.8 1
P

Figure 1: AH(p) for H($1,$2,$3,.’U4) = (.731 N ZL'Q) \Y (5133 A 334).

We say that a monotone function F : {0,1}" — {0, 1} probabilistically ampli-
fies (i, pn) to (@, qr), if 4 > Ar(pr) and gn < Ap(pp). In other words, applying
F to independent boolean random variables that are one with probability p will
amplify a promise that p is less than p; or more than py, to a promise that F’s
output is one with probability less than ¢ or more than ¢, respectively. Since
A"y is continuous, for any € > 0 there exists Ag > 0 such that H probabilistically
amplifies (8 — A,B+ A) to (B—(y—€)A, B+ (y—¢€)A) for all A < Ay, where
v=Ax(B) = (V/5—1)? ~ 1.52. Let H}, be the depth 2k binary tree with alternat-
ing layers of AND and OR gates, where the root is labeled OR. Valiant’s construc-
tion uses the fact that Ag, is the composition of A with itself £ times. Therefore,
Hj, probabilistically amplifies (8 — A,8+ A) to (8 — (v — €)*A, B+ (y — €)k AQ),
as long as (7 — €)¥ A < Ag. This implies that for any constant € > 0 we can take
2k = 3.3logn + O(1) to probabilistically amplify (8 — 2(1/n), 8 + 2(1/n)) to
(6,1 =€), where 3.3 is any constant bigger than a = log z_; 2 ~ 3.27. Further
analysis shows that for 2k = 5.3logn + O(1), the tree H}, probabilistically am-
plifies (8 — 2(1/n),B + 2(1/n)) to (2771, 1 — 2771) implying the existence
a formula of depth 5.3logn + O(1) and size O(n®?) for the [Bn]-th threshold
function. Results of Boppana [2] and Dubiner and Zwick [5] show that no smaller
formula can produce such an amplification.

One aspect of Valiant’s construction that we are going to exploit, is that the
use of a binary tree in the last 2logn layers is rather arbitrary. Similar analysis
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shows that replacing those layers by 2log, n layers of an r-ary tree result with
the similar probabilistic amplification. Replacing the r-ary AND, OR gates by
formulas using binary gates results in a depth blowup of factor [logr]. Therefore,
the same depth as Valiant’s construction can be obtained when r is a power of
two, and taking any large value of r results in an arbitrarily small degradation in
the constant before the log.

The approach of this paper, is to follow the same general scheme suggested
by Valiant. However, instead of an O(n®3) formula, we produce an O(n?) circuit
of similar depth. Because of the smaller size we cannot use a tree and maintain
complete independence between the results computed at a certain layer, as is done
in Valiant’s tree. Instead we define a random circuit such that the values in a layer
are completely independent, given the number of 1’s of the previous a layer. In
order that the portion of ones in each layer behaves as we would like, we need to
make layer sizes sufficiently large. The crucial simple observation that enables us
to keep layer sizes small, is that the circuit need only handle 2™ scenarios.

Definition 1. Let F be a boolean function F : {0,1}" — {0,1}™, and let S C
{0,1}" be some subset of the inputs. We say that F deterministically amplifies
(pi, pr) to (qi,qn) with respect to S, if for all inputs x € S, the following promise
is satisfied (we denote by |z| the number of ones in the vector z):

|F(2)| < @m if |z] <pin
\F(z)| > gnm if || > pan.

Note that unlike the probabilistic amplification, deterministic amplification
has to work for all inputs or scenarios in the given set S. From here on, whenever
we simply say “amplification” we mean deterministic amplification.

For an arbitrary small constant € > 0, the construction we give is composed
of two independent phases that may be of independent interest.

— A circuit C; : {0,1}" — {0,1}" for m = O(n) that deterministically amplifies
(B—0R1/n),B+ 2(1/n)) to (§,1—19) for an arbitrarily small constant § > 0.
This circuit has size O(n?) and depth (a + €) -logn + O(1).

— A circuit Cs : {0,1}™ — {0, 1}, such that C2(z) = 0if |z| < dm and C2(z) =1
if || > (1 —0)m, where § > 0 is a sufficiently small constant. This circuit has
size O(m) and depth (2 + ¢€) - logm + O(1).

The first circuit Cy is achieved by a simple probabilistic construction that
resembles Valiant’s construction. We present two constructions for the second
circuit, Cs. The first construction is probabilistic; the second construction is a
simulation of a logarithmic number of rounds of a certain message passing al-
gorithm on a good bipartite expander graph. The correctness is based on the
analysis of a similar algorithm used to decode a low density parity check code
(LDPC) on the erasure channel [3].

Combining the two circuits together yields a circuit C' : {0,1}" — {0,1} for
the [Bn]-th threshold function. The circuit is of size O(n?®) and depth (a + 2 +
2¢)logn + O(1).
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3 Monotone circuits for Majority

In this section we give a randomized construction of the circuit C : {0,1}" —
{0,1} such that C(x) is one if the portion of ones in z is at least Sn and zero
otherwise. The circuit C has size O(n®) and depth (2 + a + ¢€) - logn + O(1) for
an arbitrary small constant € > 0. As we described before, we will describe C' as
the compositions of the circuits C; and Cy whose parameters are given by the
following two theorems:

Theorem 1. For every €,€',c > 0, there exists a circuit Cy : {0,1}" — {0,1}"
for m = O(n), of size O(n®) and depth (a+¢€)-logn+O(1) that deterministically
amplifies all inputs from (8 —c/n, B+ ¢/n) to (¢',1 —¢€).

Theorem 2. For every € > 0, there ezists € > 0 and a circuit Cs : {0,1}" —
{0,1}, of size O(n) and depth (2+¢€)-logn+ O(1) that deterministically amplifies
all inputs from (¢',1 — €') to (0,1).

The two circuits use a generalization of the four input function H used in
Valiant’s construction. For any integer d > 2, we define the function H(® on d?
inputs as the d-ary OR of d d-ary AND gates, i.e Vi A%, z;;. Note that Valiant’s
function H is just H®.

Each of the circuits C; and C, is a layered circuit, where layer zero is the input,
and each value at the i-th layer is obtained by applying H(% to d? independently
chosen inputs from layer ¢ — 1. However, the values of d we choose for C; and
C> are different. For C; we have d = 2, while for Cy we choose sufficiently large
d = d(e) to meet the depth requirement of the circuit. We let F,, ,, r denote a
random circuit mapping n inputs to m outputs, where F' is a fixed monotone
boolean circuit with k inputs, and each of the m output bits is calculated by
applying F' to k independently chosen random inputs.

We start with a simple lemma that relates the deterministic amplification
properties of F to the probabilistic amplification function Ap. *

Lemma 1. For any €,§ > 0, the random function F deterministically amplifies
(p1,pn) to (Ar(p) - (1 +6),Ar(pr) - (1 — 68)) with respect to S C {0,1}" with
probability ot least 1 — €, if:

 (log(IS]) + log(1/e)
m‘”( ()02 )

Proof. Tt is sufficient to prove that for any input x € S, the probability of failure
of F is bounded by €/|S|. By definition, for any application of F, the probability
to get 1is Ap(p), where p = |z|/n is the portion of ones in . By monotonicity,
we may assume that p = p; or p = pp. A straightforward application of the
Chernoff bound is all we need here. For the case p = p;, we have Pr[|F(z)| >
Ap(p)(146)m] < exp(—mAp(p)d?/3), which is less than €/|S| for m > 3(log |S|+
log(1/€))/(Ar(p;) - 6%). The case p = py, is handled similarly.

3 Note that we talk about the deterministic amplification properties of a random func-
tion.
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Proof (Proof of Theorem 1).

The circuit C} is a composition of Fy, i, 7y Fme,me,Hs - - - > Fms_1,me,Hs Where
the parameters n = mg,my,...,m; = M are positive integers to be fixed later,
and are the sizes of the layers of the circuit. Since F. . g is a random function, this
describes a random construction of a circuit. We prove that with high probability
such a circuit deterministically amplifies all inputs from (8 — ¢/n,S + ¢/n) to
(¢',1 — €'). For simplicity, we only prove that with high probability for all inputs
with portion of ones smaller than §—c¢/n the output has fewer than €'m ones. The
proof of the other case is similar. For convenience of notation, we say that some
circuit (deterministically or probabilistically) amplifies p to q as a short hand for
amplifying (p,-) to (g, -) where the dot stands for the unspecified upper bounds.

The basic idea is that if layers have large size, we expect this circuit to have
similar behavior to Valiant’s tree. As observed before, for every constant ¢ > 0
there is a constant Ag > 0 such that for any p = f — A with 0 < A < Ay,
we have Ag(p) < B — (v — €)A, where v = Ag(B)'. This implies that if the
portion of ones at some level ¢ is p, then the expected portion of ones at level
i+1is Ag(p) < B—(y—¢€)A. We will set § in Lemma 1 so that the deterministic
amplification of F,; m,,, guarantees that the portion of ones at level 7 + 1 will
be at most 8 — (7 — 2¢) A. The details follow.

Let G; be the be the circuit truncated to the first ¢ layers. We prove that
with high probability G; deterministically amplifies the initial promise § — ¢/n
to B — (v — 2¢)? - (¢/n), as long as (y — 2¢)? - (¢/n) < Ap. The proof proceeds
by inductions on ¢, where the basis 4 = 0 trivially holds. So, assume that i > 0,
and that (v — 2¢)? - (¢/n) < Aq. Furthermore, assume that the first i — 1 layers
are some fized circuit G;_1 satisfying the hypothesis. Namely, deterministically
amplifies 8 — ¢/n to B — (v — 2€)* "1 - (¢/n), for all inputs. Let G; be obtained by
composing the fixed circuit G;_; with the random circuit Fp,;_, m, m. Then, as
G;_1 is fixed, it has at most 2" possible outputs. The crucial observation, is that
it suffices for Fpn,_,,m,,m to deterministically amplify 8 — (y — 2¢)*~* - (¢/n) to
B — (v —2€¢)% - (¢/n), only with respect to the 2" outputs of G;_.

Then, it suffice to choose the values § in Lemma 1, as

e-(y—2¢)" - (c/n)
B—(y—e)-(y—2e)1-(c/n)

That is, we can choose § as an increasing geometric sequence, starting from ©(1/n)
for i = 1, up to O(1) for i =log, _,. n. The implied layer size for error probability
2-" (which is much better than we need), is ©(n/§?). Therefore, it decreases
geometrically from ©(n®) down to O(n).

It is not difficult to see that after achieving the desired amplification from
B —c/n to f— Ay, only a constant number of layers is needed to get down to €.
The corresponding value of ¢ in these last steps is a constant (that depends on
€'), and therefore, the required layer sizes are all O(n).

=0((r— 20" - (c/n)).

Proof (Proof of Theorem 2).

The circuit Cs is a composition of F,, ..., g, Frny mo 1@ s -5 Fony 1 oy H@ 5

where d and the layer sizes n = mqg,m1,...,m; = 1 are suitably chosen parameters
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depending on €. We prove that with high probability such a circuit determinis-
tically amplifies all inputs from (¢’,1 — €') to (0,1). As before, we restrict our
attention to the lower end of the promise problem and prove that C3 outputs
zero on all inputs with portion of ones smaller than €.

As in the circuit Cy, the layer sizes must be sufficiently large to allow accurate
computation. However, for the circuit C5, accurate computation does not mean
that the portion of ones in each layer is close to its expected value. Rather, our
aim is to keep the portion of ones bounded by a fixed constant €, while making
each layer smaller than the preceding one by approximately a factor of d. We
continue this process until the layer size is constant, and then use a constant size
circuit to finish the computation. Therefore, since the number of layers of such a
circuit is about logn/logd, and the depth of the circuit for H(® is 2[logd], the
total depth is about 2logn for large d.

By the above discussion, it suffices to prove the following: For every € > 0
there exists a real number § > 0 and two integers d, ng, such that for all n > ng
the random circuit F,, ,,, gy with m = (1 +¢€) - n/d, deterministically amplifies
0 to & with respect to all inputs, with failure probability at most 1/n. Since
Ag(6) =1 —(1-6%2% < d- 6% the probability of failure for any specific input
with portion of ones at most §, is bounded by:

(m) (Ar(9)™ < (g 'd-5d)6m = (de- 5d—1)5m.

om
Therefore, by a union bound the probability that F,, ,, g fails is bounded by:

m on on
(de . 6d_1)6 . (&) < [(de R 5d—1)(1+e)/d . (6/(5)] — [C(d, 6) . 6(1+e)-(d—1)/d—1

where ¢(d, €) is some function of d and €. Given, €, we choose a sufficiently large
d so that (1 +¢€)-(d—1)/d — 1 is positive. Then we take sufficiently small §, so
that the expression in the square brackets is smaller than one. Finally, we take
a sufficiently large ng to guarantee that the exponentially small upper bound on
the error probability, is smaller than 1/n.

3.1 Derandomizing the construction of phase II

In this subsection we present a second construction of a small monotone circuit
C' that deterministically amplifies (a,1 — a) to (0,1) with respect to {0,1}".

Our construction uses recent ideas and algorithms from belief propagation
decoding, applied to solving majority. Underlying both belief propagation and
algorithms for majority is the concept of amplification, first introduced in the
classical 1954 paper of Moore and Shannon. Since then, the amplification method
has been generalized and used in a variety of contexts. Luby, Mitzenmacher and
Shokrollahi [8] used the amplification method to analyze the performance of a
belief propagation message passing algorithm for decoding low density parity
check (LDPC) codes. Today the use of belief propagation for decoding LDPC
codes is one of the hottest topics in error correcting codes [9,14,13].
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Let G = (V1,Vg; E) be a d regular bipartite graph with n vertices on each
side, Vi, = Vg = [n]. Consider the following message passing algorithm, where
we think of the left and right as two players. The left player “plays AND” and
the right player “plays OR”. At time zero the left player starts by sending one
boolean message through each left to right edge, where the value of the message
My, from u € Vi to v € Vg is the input bit x,. Subsequently, the messages at
time ¢ > 0 are calculated from the messages at time t— 1. At odd times, given the
left to right messages m.,, the right player calculates the right to left messages
My, from v € Vg to w € Vi, by the formula m},,, = Vyen(v)\wMuy. That is, the
right player sends a 1 along the edge from v € Vg to w € Vi, if and only if at
least one of the incoming messages/values (not including the incoming message
from w) is 1. Similarly, at even times the algorithm calculates the left to right
messages m.,,, v € Vi, w € Vg, from the right to left messages my,, by the
formula m},, = Ayen(v)\wMuy- That is, the left player sends a 1 along the edge
from v € Vi, to w € Vg if and only if all of the incoming messages/values (not
including the incoming message from w) are 1. We further need the following
definitions. We call a left vertex bad at even time ¢t if it transmits at least one
message of value one at time ¢. Similarly, a right vertex is bad at odd time ¢ if it is
a right vertex that transmits at least one message of value zero at time ¢. We let
b(t) be the number of bad vertices at time ¢. These definitions will be instrumental
in providing a potential function measuring the progress of the message passing
algorithm which is expressed in Lemma 2.

We say that a bipartite graph G = (Vi, Vg; E) is (), e)-expanding, if for any
vertex set S C Vi (or S C Vg) of size at most An, |N(S)| > e|S|. It will be
convenient to denote the expansion of the set S by es = |N(S5)|/|S|.

Lemma 2. Consider the message passing algorithm using o d > 4 regular ez-
pander graph with d — 1> e > (d+ 1)/2. If b(t) < An/d? then b(t + 2) < b(t)/n,
where n = ;94=1_.

2(d—e)

We postpone the proof of the lemma, and show its use for constructing the
circuit Cy. First, we show that, for any € > 0, the algorithm provides a circuit
of depth (2 + €)logn and of size O(nlogn) for the promise problem with a <
A(d —1)/d3. Suppose that there are at most an ones. Then b(0) < an . Therefore
b(2t) < an/n', and so b(2t) = 0 for t > log(an)/logn and all outputs are zero
at that time. If there are at most an zeros, we analyze the number of bad right
vertices as follows. Since each bad right vertex must be connected to at least d—1
left vertices associated with zero input bits, and since there are at most an left
vertices transmitting zero, it follows that b(1) < an-d/(d—1) < \/d? whence the
conditions of Lemma 2 are satisfied and b(2t + 1) < 224 /pt and so b(2t + 1) = 0
for t > log(az%;n)/ logn.

The better the expanders we use, the bigger n = % gets, and the better
the time guarantee above gets. How good are the expanders that we may use?
One can show the existence of such expanders for sufficiently large d large, and
e > d — c for an absolute constant c.

The best known explicit construction that gets close to what we need, is the
result of [4]. However, that result does not suffice here for two reasons. The first
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is that it only achieves expansion (1 — €)d for any € > 0 and sufficiently large
d depending on e. The second is that it only guarantees left-to-right expansion,
while our construction needs both left-to-right and right-to-left expansion. We
refer the reader to the survey [6] for further reading and background.
d—1 and

For such expanders, n > %=, and therefore, after 2log(427)/log dQ_c 1

(2+¢) 10112%121 iterations, all messages contain the right answer, where € can be
made arbitrarily small by choosing sufficiently large d. It remains to convert the
algorithm into a monotone circuit, which introduces a depth-blowup of log [d — 1]
owing to the depth of a binary tree simulating a (d — 1)-ary gate. Thus we get
a (2 + e)logn-depth circuit for arbitrarily small € > 0. The size is obviously
dn - depth = O(nlogn).

To get a linear circuit, further work is needed, which we now describe. The
idea is to use a sequence of graphs Go = G, G, . .., where each graph is half the
size of its preceding graph, but has the same degree and expansion parameters.
We start the message passing algorithm using the graph G = Gy, and every tg
rounds (each round consists of OR and then AND), we switch to the next graph
in the sequence. Without the switch, the portion of bad vertices should decrease
by a factor of nt°, every t; rounds. We argue that each switch can be performed,
while losing at most a constant factor. To describe the switch from G; to Git1,
we identify Vi,(Giy1) with an arbitrary half of the vertices Vi,(G;), and start the
message passing algorithm on G;y; with the left to right messages from each
vertex in Vi, (G;11), being the same as at the last round of the algorithm on G;.
As the number of bad left vertices cannot increase at a switch, their portion, at
most doubles. For the right vertices, the exact argument is slightly more involved,
but it is clear that the portion of bad right vertices in the first round in G;41,
increases by at most a constant factor ¢, compared with what it should have
been, had there been no switch. (Precise calculation, yields ¢ = 2dn.) Therefore,
to summarize, as the circuit consists of a geometrically decreasing sequence of
blocks starting with a linear size block, the total size is linear as well. As for the
depth, the amortized reduction in the portion of bad vertices per round, is by a
factor of ' = n/c'/*. Therefore, the resulting circuit is only deeper than the one
described in the previous paragraph, by a factor of logn/logn’. By choosing a
sufficiently large value for ¢, we obtain:

Theorem 3. For any € > 0, there exists a > 0 such that for any n there exists a
monotone circuit of depth (2+¢€)logn+ O(1) and size O(n) that solves a-promise
problem.

We note here that O(logn) depth monotone circuits for the a-promise problem
can also be obtained from e-halvers. These are building blocks used in the AKS
network. However, our monotone circuits for the a-promise problem have two ad-
vantages. First, our algorithm relates this classical problem in circuit complexity
to recent popular message passing algorithms. And second, the depth that we
obtain is nearly tight. Namely, Moore and Shannon [10] prove that any monotone
formula/circuit for majority requires depth 2logn — O(1), and the lower bound
holds for the a-promise problem as well.

Proof (Proof of Lemma 2). (builds on [3])
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We consider only the case of bad left vertices. The proof for bad right vertices
follows from the same proof, after exchanging ones with zeroes, ANDs with ORs,
and lefts with rights. Let B C V1 be the set of bad left vertices, and assume
|B| < An/d? at some even time t and B’ the set of bad vertices at time ¢ + 2.
We bound the size of B' by considering separately B’ \ B and B’ N B. Note that
all sets considered in the proof have size at most An, and therefore expansion at
least e.

N(B")

To bound B’ \ B, consider the set Q = N(B'\B)\N(B) = N(B'UB)\ N(B).
Since vertices in @) are not adjacent to B, then at time ¢ + 1 they send right to
left messages valued zero. On the other hand, any vertex in B’ \ B can receive
at most one such zero message (otherwise all its messages at time ¢ + 2 will be
valued zero and it cannot be in B'). Therefore, since each vertex in @ must have
at least one neighbour in B'\ B, it follows that |Q| < |B'\ B|. Therefore, we have:

IN(B'"UB)| = |N(B)| +|Q| < [N(B)| + |B'\ B| =ep - |B| +|B"\ B.

On the other hand, [N(B'UB)| >e-|B'UB| =e¢-(|B|+|B'\ B|).
Combining the above two inequalities, we obtain:

B\ Bl < “Z=F.|B|. 1)
e

To bound B' N B, consider the set T = N(B'NB)\ N(B\ B') = N(B) \
N(B\B'). Let Ny (resp. N1) be the number of zero (resp. one) messages received
by vertices in B' N B at time ¢ + 1. Then obviously, No + Ny = d - |B' N B|. As
before, a vertex in B’ N B can receive at most one zero message and therefore
No < |B'n B|. Also, let Ty be the vertices of T' that transmit at least one zero
message at time t+ 1 to B'N B, and Ty = T'\ Ty. Clearly |Tp| < Np. On the other
hand, each vertex in T} transmits a one to some vertex in B’ N B, and therefore
must have at least two neighbors in B’ N B, implying that |T1| < Ny/2. Hence

|T| < No + N1/2 = (No+ Ny)/2+ No/2
< (@/2)|B'nB|l+(1/2)|B'nB|=|B'NB|-(d+1)/2.

Therefore

en-|B| = N(B)| = IN(B\ B)| +|T| <d-|B\ B +|B' 1 B|- (d+1)/2
=d-|B| - |B'nB| (d—1)/2.
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This implies:

d—eB

|BInB|Sm'|

Bl. 2)

Combining inequalities (1) and (2) we get that:

—e d—ep
1 ta-ye

[B/|B < 2

Since e > (d + 1)/2, and ep > e, this yields the required bound:
|B'|/|B] <2(d—e)/(d - 1).

As noted before in Section 2, replacing the last 2logn layers of Valiant’s
tree with 2log, n layers of r-ary AND/OR gates, results in an arbitrarily small
increase in the depth of the corresponding formula for a large value of r. It is
interesting to compare the expected behavior of the suggested belief-propagation
algorithm to the behavior of the (d — 1)-ary tree. Assume that the graph G is
chosen at random (in the configuration model), and that the number of rounds
k is sufficiently small, (d — 1)2* < n. Then, almost surely the computation of
all but o(1) fraction of the k-th round messages is performed by evaluating a
(d — 1)-ary depth k trees. Moreover, introducing an additional o(1) error, one
may assume that the leaves are independently chosen boolean random variables
that are one with probability p, where p is the portion of ones in the input.
This observation sheds some light on the performance of the belief propagation
algorithm. However, our analysis proceeds far beyond the number of rounds for
which a cycle free analysis is applicable.

4 Monotone formulas for threshold-k functions

Consider the case of the k-th threshold function, T} ., i.e. a function that is one
on z € {0,1}™if |x| > (k + 1) and zero otherwise. We show that, by essentially
the same techniques of Section 3, we can construct monotone circuits to this
more general problem. We assume henceforth that k& < n/2, since otherwise, we
construct the circuit T,—1_g,, and switch AND with OR gates. For k/n = O(1),
the construction yields circuits of depth 5.3 logn + O(1) and size O(n?). However,
when k = o(n), circuits are shallower and smaller (this not surprising fact is also
discussed in [2] in the context of formulas).

The construction goes as follows: (i) Amplify (k/n, (k+1)/n) to (B—2(1/k), B+
£2(1/k)) by randomly applying to the input a sufficiently large number of OR gates
with arity ©(n/k) (ii) Amplify (68— 2(1/k), B+ 2(1/k)) to (O(1),1—0O(1)) using
a variation of phase I, and (iii) Amplify (O(1),1 — O(1)) to (0,1) using phase II.

We now give a detailed description. For the sake of the section to follow, we
require the following lemma which is more general than is needed for the results
of this section. The proof is omitted for lack of space.
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Lemma 3. Let S C {0,1}", and € > 0. Then, for any k, there is a randomized
construction of a monotone circuit that evaluates Ty, 5, correctly on all inputs from
S and has

depth < log(n) + 2.3log(k') + (2 + €) - loglog |S| + O(1),
size < O(log |S| - k'n).

Here k' = min(k,n — 1 — k), and the constants of the O depend only on e.

To guarantee the correctness of a monotone circuit for T}, 1, it suffices to check
its output on inputs of weight k,k + 1 (as the circuit is monotone). Plugging
log S| =1og((}) + (kil)) = O(klog(n/k)) into the lemma yields:

Theorem 4. T}, has a randomized construction of a monotone circuit with
depth < log(n) + 4.3log(k') + O(loglog(n/k)),
size < O((k")?nlog(n/k")),

where k' = min(k,n — 1 — k), and the constants of the O are absolute.

5 Reducing the circuit size

The result obtained so far for the majority, is a monotone circuit of depth 5.3 log n+
O(1) and size O(n?). In this section, we would like to obtain smaller circuit size,
at the expense of increasing the depth somewhat. The crucial observation is that
the size of our circuit depends linearly on the logarithm of the number of sce-
narios it has to handle. Therefore, applying a preprocessing stage to reduce the
wealth of scenarios may save up to a factor of n in the circuit size. We propose a
recursive construction that reduces the circuit size to about nl+v2.

Initially, by Theorem 4, we have monotone circuits C,?’n for the threshold
functions T}, , with size so(n) = O(n®) and depth do(n) = 5.3logn + O(1).

Given circuits C’,SL for Ty, of size and depth bounded by s;(n), d;(n), one

can calculate all threshold functions in parallel and obtain a sorting circuit C,(f) :
{0,1}" — {0,1}" of size and depth bounded by ns;(n), d;(n). The circuit C,gf:l)
is built of two stages. First, the n-bit input is partitioned into n/a; blocks of size
a;, and each block is sorted in parallel using the circuit C(Sz). Second, the kth
threshold function is calculated on the partially sorted n-bit string by the family
of circuits with parameters given by Lemma 3. When the n/a blocks are sorted,
there are only (a; + 1)"/ % possible inputs, as the number of ones in each blocks
completely specifies the input. Therefore, the first stage reduces the number of
scenarios to (a; + 1)™®* < n™/% and we have

siv1(n) = (n/a;) - (a; + 1) - si(a;) + O ((n/a;) -logn - n*) = n - si(a;) + n®te® /a;,
dir1(n) = d;(a;) + 5.3logn — 2log(a;) + O(loglogn).

Let a; = n® for some constants a;, and assume that s;(n) = n+t°(1) and that
d;(n) = 6;logn + O(loglogn). Then we obtain the following recurrence:

Oi41 = max(l + a;0;, 3 — Oéz'), 6i+1 = a;0; + 5310gn — 2q;.
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We choose a; = 2/(0; + 1) to equate 1 + «o;0; with 3 — a;. Consequently, 0,41 =
3—2/(o;+1) and §;41 = 5.3+ (6;—2)-2/(0;+ 1), yielding the following sequence:

¢ |0 1 2 3 4 5 6 7 8 9 10

@;10.500]0.571|0.583|0.585|0.586|0.586|0.586|0.586|0.586|0.586|0.586
0713.000|2.500]2.429|2.417|2.415(2.414|2.414|2.414|2.414|2.414|2.414
0; |5.271|6.906(8.074|8.814/9.259(9.522(9.677(9.768(9.821|9.852|9.870

The sequence «a; tends to 1 + v/2 which is the positive solution of x = 3 —
2/(z + 1), and §; tends to (1+ v/2)(a — 2 + 2v/2) ~ 9.896. Therefore:

Theorem 5. There is a randomized construction of a monotone circuit for the
magority of size n'TV2°W  and depth 9.91ogn + O(1).

6 Related Work and Open Problems

It is of great interest to improve upon the size or amount of randomness re-
quired by our construction. One approach, is to reduce the number of scenarios
by preprocessing. The best result we have here is stated in Theorem 5. A second
approach, is to improve the original bound (n®logn random bits, n® size). The
obvious obstacle are the first few layers of the phase I circuit. The current n® size
upper bound follows from a union bound, which we do not know to be tight. In
fact, we do not even know how to save on the size or amount of randomness re-
quired to construct the first layer! This very problem can be cast as a discrepancy
problem on hypergraphs. Indeed, if we restrict ourselves to repeated applications
of H(x1,x2,%3,%4) = (x1 A x2) V (z3 A x4) so that each application is associated
with the two pairs {z1, 22} and {z3, 24}, we have the following discrepancy prob-
lems on 4-uniform hypergraphs. Find a hypergraph on n vertices with each edge
composed of two size-two sets e = e; U ez. The graph should have as few edges
as possible while satisfying that for every vertex subset S C [n], the portion of
edges that have at least one of their halves inside S is close to Ag(|S|/n). This
problem seems to generalize a similar problem for graphs: constructing a graph
where for every vertex subset S, the portion of edges with both end points in S
is close to (|S|/n)?. Not surprisingly, this is equivalent to expansion.

In seminal work, Karchmer and Wigderson [7] gave a precise characterization
of both monotone and monotone formula/circuit size based on the complexity
of related communication search problems. For the majority function, the mono-
tone search problem is as follows. Let mMaj-search be the following two-player
communication complexity problem. Player I is given a subset A C [n] of size
n/2 + 1. Player II is given a subset B C [n] of size n/2. They want to determine
an element ¢ € [n] such that 4 is in their intersection. In the non-monotone version
of the problem, Maj-search, the input is the same, but now they are allowed to
find either an element i in their intersection, or an element j lying outside of both
sets. By the main theorem of [7], the minimal monotone formula/circuit size for
majority is equal to the communication complexity of mMaj-search, and the min-
imal formula/circuit size for majority is equal to the communication complexity
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of Maj-search. The monotone communication complexity problem for the promise
problem is as above except that now Players I and IT are given subsets A and
B each of size 2n/3 and again they want to find some element in their common
intersection. Likewise, for the monotone version, they want to compute either an
element in the common intersection, or an element j lying outside of both sets.
We find it useful to consider the upper and lower bounds for majority, as well as
for the promise version of majority within this communication complexity setting.

There are two central open problems related to this work. First, is the promise
version really simpler than majority? A lower bound greater than 2logn on the
communication complexity of mMaj-search would settle this question. Boppana,
[2] and more recent work [5] show lower bounds on a particular method for ob-
taining monotone formulas for majority. However we are asking instead for lower
bounds on the size/depth of unrestricted monotone formulas/circuits. Secondly,
the original question remains unresolved. Namely, we would like to obtain explicit
uniform formulas for majority of optimal or near optimal size. A related problem
is to come up with a natural (top-down) communication complexity protocol for
mMaj-Search that uses O(logn) many bits.

References

1. M. Ajtai, J. Komlds, and E. Szemerédi. Sorting in clogn parallel steps. Combina-
torica, 3(1):1-19, 1983.

2. R. B. Boppana. Amplification of probabilistic boolean formulas. IEEE Symposium
on Foundations of Computer Science (FOCS), pages 20-29, 1985.

3. D. Burshtein and G. Miller. Expander graph arguments for message-passing algo-
rithms. IEEE Trans. Inform. Theory, 47(2):782-790, 2001.

4. M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness conductors
and constant-degree expansion beyond the degree 2 barrier. In Proceedings 34th
Symposium on Theory of Computing, pages 659-668, 2002.

5. M. Dubiner and U. Zwick. Amplification by read-once formulas. SIAM J. Comput.,
26(1):15-38, 1997.

6. S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. to
appear at the Bulletin of the AMS.

7. Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require
super-logarithmic depth. In Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing, pages 539-550, Chicago, IL, May 1988.

8. M. Luby, M. Mitzenmacher, and A. Shokrollahi. Analysis of random processes via
and-or tree evaluation. In ACM-SIAM Symp. on Discrete Algorithms (SODA), 1998.

9. M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. A. Spielman. Analysis of low
density codes and improved designs using irregular graphs. ACM Symposium on
Theory of Computing (STOC), 1998.

10. E. F. Moore and C. E. Shannon. Reliable circuits using less reliable relays. I, II. J.
Franklin Inst., 262:191-208, 281-297, 1956.

11. M. S. Paterson. Improved sorting networks with O(log N) depth. Algorithmica,
5(1):75-92, 1990.

12. M. S. Paterson, N. Pippenger, and U. Zwick. Optimal carry save networks. In
Boolean function complezity (Durham, 1990), volume 169 of London Math. Soc.
Lecture Note Ser., pages 174-201. Cambridge Univ. Press, Cambridge, 1992.



16

13.
14.

15

Shlomo Hoory, Avner Magen, and Toniann Pitassi

T. Richardson and R. Urbanke. Modern coding theory. Draft of a book.

T. Richardson and R. Urbanke. The capacity of low-density parity-check codes under
message-passing decoding. IEEE Trans. Inform. Theory, 47(2):599-618, 2001.

. L. G. Valiant. Short monotone formulae for the majority function. J. Algorithms,
5(3):363-366, 1984.



