Girth and Euclidean Distortion
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ABSTRACT

In this paper we partially prove a conjecture that was
raised by Linial, London and Rabinovich in [11]. Let
G be a k-regular graph, k > 3, with girth g. We show
that every embedding f : G — 2 has distortion Q(,/g).
The original conjecture which remains open is that the
Euclidean distortion is bounded below by (g). Two
proofs are given, one based on semi-definite program-
ming, and the other on Markov Type, a concept that
considers random walks on metrics.

1. INTRODUCTION

Finite metric spaces and their embeddings in other
metric spaces have been intensively investigated in re-
cent years. Consequently, a growing number of algorith-
mic problems were solved by comprehending the met-
ric properties of an underlying combinatorial structure,
in particular graphs. For metric spaces (X,dx) and
(Y,dy), and an embedding f : X — Y we define the
distortion of f by:

dist(f) = sup U@ FW)

dX(xay)
sup
z,y€X dX((E,y)

z,yeX dY(f("”): f(y)) .
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We denote by cy (X, d) the least distortion with which
(X,d) may be embedded in Y. For p > 1 we denote
cp(X,d) = cp, (X, d). A special case of interest is when
Y is the Euclidean space £>. In this case, a fundamental
result of Bourgain [5] states that c2(X, d) = O(log n) for
every n-point metric space (X, d).

One natural source for examples of metrics comes
from graphs. A graph G induces a metric dg on its
vertex set, where dg(u,v) is the length of the shortest
path in G joining w and v. Special families of graphs
define special families of metrics, e.g. expander graph
metrics are studied in [5, 14, 13], tree metrics in [2, 6,
12, 15], metrics of graphs with forbidden minors in [17,
9, 10] and many more.

Here we consider regular graphs with constant de-
gree, and wish to study the Euclidean distortion of these
graphs as a function of their girth.

In [11], Bourgain’s upper bound for the Euclidean dis-
tortion was shown to be tight. In fact, the Euclidean
distortion of an n point constant degree expander is
Q(logn). A new proof of this phenomenon for the case
of expanders girth O(log n) follows from the results pre-
sented in this article.

In most examples we know, metrics are far from be-
ing Euclidean, since they include ”too many” triples for
which the triangle inequality holds as (a near) equality.
The simplest example is K1 3 that cannot be embedded
isometrically in Euclidean space, since there cannot be
three geodesics between three different points that meet
in their interior. For the hypercube of dimension m,
there are m! geodesics between every pair of antipodes,
and consequently we get a large Euclidean distortion [8,
13].

It is known that for a tree T on n vertices, c2(T, dr) =
O(v/loglogn), and this is bound is tight, as the Eu-
clidean distortion of the complete binary tree on n ver-
tices is ©(+/loglogn) (see [6, 15, 12]). Motivated by
this, Linial, London and Rabinovich considered regular
graphs with constant degree (bigger than 2) and with
girth g. Any such graph contains isometrically a tree
of depth g/2 — 1, which immediately gives the lower
bound ¢3(G,da) = Q(+/log g). Unlike the complete bi-
nary tree example, every vertex in the graph is a root
of such a tree. In [11], Linial et. al. conjecture that
c2(de) = Q(g). In this paper we prove c2(dg) = Q(,/9).

A key ingredient (sometimes stated explicitly and of-
ten implicit in the proofs) in all the existing proofs of



lower bounds for the Euclidean distortion of graphs is
a Poincaré type inequality. Let G be a graph, and take
any function f : V(G) — ¢2. A Poincaré type inequality
bounds the average size of {||f(u) — f(v)||2}u,vev(c) in
terms of its average “gradient” {[|f(u) — f(v)|[}uver(s)-
One over-simplified way to think of such an inequality is
that it gives some bound on how common it that equal-
ity holds in the triangle inequality of triplets of points in
Euclidean space. A lower bound on the distortion of an
n-point k-regular expander with edge expansion ®(G) =

min { EAY@ AL, 4 ¢ V(G),1< 14 <|V(G)]/2}, can

14]
be derived from the following Poincaré inequality for
functions f : V(G) — R (see [14]):

n—1
D fw -0 < G

u,vEV(QG)

D 1fw) = f@)l-

wv€E(G)

Let T be the complete binary tree of depth N. The
following Poincaré inequality is implicit in [12], where
a new proof of the estimate c2(Tn) = Q(ylogN) is
obtained. Denote by r the root of T, and for every
integer k let Fi be the set of all unordered pairs of
vertices {u,v} C V(T) such that dr(u,r) = dr(v,r)
and dr(u,v) = 2%. Then, for every f: V(T) = R:

[logs N |

Z Z 27(dT(u’T)+2k—1+2k) | f(u) — f(v)lz <

k=1 {u,v}€F

c > 27| fw) — f()],

wvEE(T)
where C is an absolute constant.

This paper further develops the above theme. We in-
troduce two Poincaré type inequalities which are useful
in the search of lower bounds for Euclidean distortion
of graphs with large girth. The first is the notion of
Markov type, due to K. Ball [1], which concerns the
wandering of symmetric Markov chains whose state set
is a metric space. We refer to section 2 for the defini-
tion. We also prove the following theorem, which can
be viewed as a new Poincaré type inequality :

THEOREM 1.1. Let H be an Euclidean space. and G
be a k-regular graph, k > 3, with girth g. Fiz some
1< s<g/2. For every f : V(G) — H the following
inequality holds:

> @ = @I <

dg(u,v)=s

Cs(k—1)"""- " |If(u) = F)II",

w€E(G)

where C s an absolute constant.

If, in addition, the graph G has a spectral gap, we can
prove a stronger inequality. This leads to a new simple
proof of the tightness of Bourgain’s embedding theorem:

THEOREM 1.2. Let H be an FEuclidean space and G
be a k regular graph, k > 3, with girth g and spectral gap

€> 0. Fiz some 1 < s < g/2. For every f: V(G) - H
the following inequality holds:

> lIfw) = f)I* <

dg(u,v)=s

_ e*Ces/k

Clk—1)" - 1 3l - F@)I7

w€E€E(G)

where C s an absolute constant.

We apply the above inequalities to prove our main
result:

THEOREM 1.3.: There is an absolute constant C > 0
such that c2(G) > C./g for every k-regular (k > 2)
graph G with girth g. If, in addition, G has a spectral
gap € > 0 then:

e2(G) > Gy

B ,/min{g,%}.

Remark: It is well known and not hard to show by
probabilistic arguments that for every integer k£ > 3,
there is an € = ¢, > 0 and ng = no(k) such that if n >
no and kn is even, there exist k-regular graphs of order
n, spectral gap greater than ¢ and girth Q(logn). In
view of Theorem 1.3 these graphs show that Bourgain’s
upper bound is tight.

This paper contains two proofs for the first part of
Theorem 1.3. We first present a proof based on the no-
tion of Markov type. Next, we prove the inequalities
in Theorems 1.1 and 1.2 to deduce the full statement of
Theorem 1.3. This proof is based on quadratic program-
ming. In section 4 we discuss the interrelations between
the two methods.

2. APROOFBASED ONTHE CONCEPT
OF MARKOV TYPE

The first proof we present is based on the important
notion of Markov type, due to K. Ball [1]. This con-
cept is an invariant of metric spaces. It is related to
other “types” that are central to the modern theory of
Banach spaces. The basic assumption of this concept
can also be viewed as a Poincaré inequality on metric
spaces. Although we will see later that the Markov type
method cannot yield the second statement in Theorem
1.3, it does give a simple and conceptual proof of the
first statement. The proof we present here shows that
da does not have Markov type 2. The lower bound on
c2(G) follows from the known fact that Lo has Markov
type 2. We recall some basic theory from [1].

Let (X,d) be a metric space. A symmetric Markov
chain on X is a Markov chain {Z;}72, on a state space
{z1,...xm} C X with a symmetric transition matrix and
such that Zo is uniformly distributed on {z1,...,Zm}.
In other words, there is a m x m symmetric stochas-
tic matrix A = (as;) such that for all 1 < 4,57 < m
and integer I > 0, P(Zi41 = zj|Z; = z;) = a;; and
P(Zy = x;) = 2. For p > 0 and an integer T let

m



Mp(X,T) be the smallest constant C > 0 such that for
every symmetric Markov chain on X, {Z;}2,

E d?(Zr, Zo) < CPTE d*(Z1, Zo).

We say that (X,d) has Markov type p if M,(X) :=
supy Mp(X,T) < oco.In this case M,(X) is called the
Markov type p constant of X.

The following proposition was shown in [1], but for
the sake of completeness we prove a somewhat stronger
and intuitive version of it.

PRrROPOSITION 2.1.: The space Lo has Markov Type
2.

Proof: We first observe that the Markov type 2 prop-
erty for R implies, by integration, the same conclu-
sion for L,. For symmetric Markov chains on R we
prove the following negative correlation inequality that
implies Markov type 2. Let {Z;}{2; be a symmetric
Markov chain with transition matrix A and state space
{z1,...,Zm} C R. The symmetry assumption makes it
intuitively plausible that Zr—Z7_; and Zr_; —Zp must
be negatively correlated. To prove this, notice that Z;
is uniformly distributed on {z1, ...,z }, for every I > 0.
Since A is symmetric and stochastic, its spectrum is in
[-1,1], and we deduce that (I — A)(I — A") is positive
semi-definite for every [. Therefore,

E(Zr — Zr-1)(Zr-1 — Zo) =
]EZTZT_l — ]EZTZO — ]EZ%,l =+ ]EZT_1ZO =

1 & 1
— > (Wimizy — — 3 (AT)iwiz; -

,j=1 i,j=1

L 2, 1 ¢~ 7t _
m ;x’ T ,-;l(A )ij iz =
T+ AT A AT YY) =
m
— (I = AT AT z,2) <0,
where z = (z1, ..., £m). Hence :

E(Zr — Zo)* = B(Zr-1 — Zo + Z1 — Zr-1)" =

E(Zr-1—20)> +2E(Z1—Zr-1)(Zr—1—Z0)+E(Z1—Z1-1)°

<E(Zr-1 — Zo)* + B(Z1 — Zo)>.

By summing this inequality over T =1, ..., N, we deduce
that the real line has Markov type 2 with constant 1. il

The following simple consequence of the above anal-
ysis will be useful for us:

COROLLARY 2.2.: For every metric space (
M>(X).

Proof: Fix some embedding f : X — L» such that
1/D < ||f(z) — f(y)ll/d(z,y) < 1 for every z,y € X.
For every symmetric Markov chain {Z;};2, on X, the

Markov type 2 property of Ly applied to the Markov
chain {f(Z;)}{2, gives:

%IE d*(Zr, Zo) <E||f(Zr) — f(Z0)|]* <

TE|f(Z1) - f(Zo)I” < TE d*(Z1, Zo),

so that D > M>(X). I
The first assertion in Theorem 1.3 follows from the
following:

PROPOSITION 2.3. Let G be a k-reqular graph with
girth g. Then

My(G) > 2= [g— ]

Proof: Consider the symmetric Markov chain {Z;}{2,
that corresponds to the canonical random walk on G.

Namely, Z is uniformly distributed on V(G) and P(Z;41 =

v|Zy = u) equals % if w and v are neighbors and 0 oth-

erwise. Note that every vertex v € V(G) is the root of
a k-regular tree of depth g/2 (or more precisely, as a
metric space, each ball of radius smaller than g/2 in G
is isometric to such a tree, whose root is the center of
the ball). Aslong as T' < g/2, each step of the random
walk {Z;}{_, moves away from Z; with probability at
least X% (if Z, = Z, then this probability is 1) and
towards it with probability at most +. In other words,
aslong as T' < g/2, the random walk has a positive drift
away from Zy. To quantify this, for every 1 < T < g/2
we have:

E da(Zr, Zo) >

k-1 1
T(E dG(ZT—l,ZO)+1)+E(E da(Zr-1,Z0)—1) =
k—2
E d(;'(ZTfl, Zo) =+ T
Hence, for every T < g/2:
2 2 k—2\>_,
E d&(Zr, Zo) > (E da(Zr, Z0))” > % T.

On the other hand:
E d%(Zr, Zo) < M2(G)’TE d%(Z1, Zo) = M2(G)’T.

The proposition follows by taking T = [£ —1]. lI

Now, together with Corollary 2.2 this proposition im-
plies that c2(G) > C,/g, where C is an absolute con-
stant not depending on k.

3. BOUNDING THE DISTORTION VIA
SEMI DEFINITE PROGRAMMING
In what follows G is a k regular graph with girth g.

X,d), c2(X,d) > Semi-Definite Programming has proved to be a cen-

tral tool in establishing lower bounds on cz(+). Our proof
of Theorems 1.1 and 1.2, and our second proof of Theo-
rem 1.3 are all based on this point of view, together with
an analysis of the algebraic properties of the graphs in
question. We first present the necessary background.



Let PSD»y, be the cone of positive semi-definite sym-
metric nxn matrices. Define B, tobe {Q € PSD,|Q1 =
0}, and let

1
i@ (6,0)Qi5 )
Zi’j:Qi,j<0 d? (4, Qi1 ’

if the denominator is not 0, and 1 otherwise.
The following lemma gives a formula for cs.

6(Q.d) = (

PROPOSITION 3.1: (Linial, London, Rabinovich [11])
Suppose X is finite, | X| = n, then

c2(X,d) = sup 6(Q,d)
QeBn

In order to make use of the algebraic properties of
G, we turn to some background on the following very
useful concept.

3.1 Geronimus Polynomials

Let G be a k-regular graph with girth g and let A be
its adjacency matrix. We define AY) as @’s distance ¢
matrix. Namely, A{) =1 if the distance da(i,j) =t
and 0 otherwise.

There exist polynomials P;, such that P; has degree
t and P;(A) = A® for every t < g/2. The conditions
that define these polynomials easily translate to a simple
recurrence relation. Clearly Pyo(z) = 1, and Pi(z) = z.
Note that A® — 4. A®™D equals —kA¢"? = —k - T for
t=2, and —(k —1)A®"? for 2 < t < g/2. Therefore,

Py(z) = zP,(z) — kPo(z) = 2* — k,
and

Pi(z) = zPi_1(x) — (k— 1)Pi_2(z) for every t > 2.

These polynomials are often called in the literature
“Geronimus Polynomials”, a name that we adopt. In
Figure 1 the first even Geronimus polynomials are shown,
in the relevant range of [—k, k]. Basic facts about Geron-
imus polynomials can be found in [3, 18] (but note the
different normalization used in these references). To
make this discussion self contained, we briefly review
some of the necessary facts and sketch their proofs.

In order to understand the analytical properties of the
Geronimus polynomials, one first solves the recursion
and finds an explicit formula for them. The following
trigonometric expression is obtained:

Vt >0 Pi(2vk—1cosh) =
(k — 1)/271 (k—1)sin((¢ +S1i3199) —sin((t — 1)0) (1)

To verify this identity, check the cases t = 1,2 and note
that for ¢ > 2 the recursion relation holds.

Our next observation is that all the roots of P; are real
and they all lie between —2v/k — 1 and 2v/k — 1. This
can be derived from the general theory of orthogonal
polynomials (e.g. [19]), but we provide a direct proof.
By identity 1 it suffices to show there are ¢ distinct
real values of 6 in [0,7) for which the above expres-
sion vanishes. Indeed, define 8§, = (5 + qm)/(t + 1)

400 T T T T T

350 | Pg :

300 |

250 | 1
200 - 4
150 4
100 * A

50

Figure 1: The first (even) Geronimus polynomials
with k£ = 3.

for g =0,1...,t — 1. Now, it is not hard to see that
P,(2/k —1cosb,) is positive for even g, and negative
for ¢ odd. Therefore, there is a zero for some value of
0 between 6, and 0441, yielding t zeros in the desired
interval.

The last two facts that we need are easily verified by
induction:

Pi(k) =k(k—1)""" Vt>0,
and
Pi(k) = (k=2) 2 (t(k=1)"" —2(k—1)' —t(k—1)" "' +2).

3.2 Technical lemmas

Even though the Geronimus polynomials are not con-
vex throughout [—k, k], we now prove an inequality that
reflects the fact that their non-convexity is restricted
to the range [—2v/k — 1,2v/k — 1]. The proof uses the
classical Markov inequality (see [4]): |[P'|lc—1,17 <
n?||P||L 1,17 for every real polynomial P of degree
n, where || fl|L.[~a,a] = SUP|; <, |f(z)]- A more direct
proof can be given by differentiating formula 1, but use
of Markov’s inequality eliminates a tedious calculation
which leads, essentially, to the same estimate.

LEMMA 3.2.: Let s > 40 be an even integer. For



every e >0 and « € [k, k — €,

P,(k) — Ps(k—¢) S P, (k) — Ps(w).
€ - k—x

Proof: Define:

fla) = =20,

We need to show that f is non-decreasing on [—k, k]. By
taking a derivative of the right hand side and expanding,
this follows from the claim that for all x € [k, k],

h(z) := Ps(x) + (k — z)P,(z) < Ps(k).

Note that h(k) = Ps(k) and, since P; is an even function
(for s even), it follows that h(—k) = Ps(k) — 2kP;(k) <
P,(k) (since Pi(k) > 0). It is therefore enough to
show that h(zo) < Ps(k) whenever h'(xo) = 0. Now,
K (xz) = (k — z)P) (), so that the zeros of A’ coincide
with the zeros of P.'. Since P; has all its roots in the
interval, [-2vk — 1,2k — 1], the same holds for P;'.
It therefore suffices to show that h(xz) < Ps(k) through-
out the interval [-2v/k — 1,2v/k — 1]. Every point in
this interval has the form z = 24/k — 1 cos 8 for some
0 < 8 < 7. Using the trigonometric expression 1 we
get:

Py(z) = P;(2cos0vVk — 1) =

sj2—1(k —1)sin((s + 1)f) — sin((s — 1)9).
sin 0

(k—1)

It is easily verified that sin(ra) < rsina for a € [0, 7)
and r > 1. Therefore,

1Pl L oo —2vF=T,2vF=T) <
(k=17 ((k—1)(s +1) + (s — 1)).
Markov’s inequality implies that
”P‘;”Lm[—Z\/le,h/k—il] <

82

W1 1Psll 7, oo = 20/F=T,2v/F=T]>
so that:

1] 2 oo (—2vE=T,2vF=T] <

1Psll 2., (—2vm=T,2vF=T] + 2K Pl £ (=0 vE=T.208=T) <

s/2—-1 ks®
(k=1 (k= 1)+ )+ (5 - ) (14 ) <

k(k—1)*"! = Py(k).

It is not hard to verify the last inequality for every & > 3
and s > 40.

We need one more fact concerning Geronimus poly-
nomials:

LEMMA 3.3.: For every integer s and € < k/20,
Pi(k—€) > k(k—1)* 1. 180/

Proof: Let yi,...,ys be the roots of Ps. By the mean
value theorem there is some a € (k — ¢, k) such that:

P(k) ] _ Pla)
log [Ps(k—a] =P -

1 €S 150es
=€- < <
¢ Z:a—yi_k—e—Z\/k— - k

where we have used the facts that yy,. ..
€ < k/20 and k > 3. This yields the required result since
Pyk)=k(k—1)"1. 1

COROLLARY 3.4. Let s > 40 be an even integer and
0<e<k. Then:

Ps(k_e) —Ces
~ e <00-eT),

for some absolute constant C > 0.

1

Proof: When e < k/20 this follows from Lemma 3.3.
When € > k/20 the right hand side is bounded from
below by an absolute constant. The left hand side is
at most 2, since the minimum of P, is attained in the
interval [-2vk — 1,2v/k — 1], and the bound obtained
in the proof of Lemma 3.2 implies in particular that
P,(z) > —P;(k) for every z in this interval. il

3.3 Proof of Theorems1.1and 1.2

Let G be a k-regular graph with girth g and fix an
integer 1 < s < g/2. For every two vertices u,v € V(G)
such that dg(u,v) = s there is a unique path of length
s joining v and v. In other words, there is a unique set
of vertices {wu,s (?) }i—o C V(G) such that wy ,(0) = u,
Wy,v(8) = v and for every ¢ > 1, [wu,v (i — 1), wu,v(2)] €
E(G). Each edge e € E(G) appears in exactly s(k —
1)*~" such paths. Hence, for every metric space (X, dx)
and every mapping f: V(G) = X

3 A (), fw) <

dg(u,v)=s

z (Z dx (f(wu,v (’L - 1))7 f(w"s” (Z)))) <

dg(u)=s \i=1

< Y 8D (Fwenli— 1)), Fwan (i)

dg(u,v)=s i=1

Sh-1"" S d(fw), Fv).

wv€E(G)

It follows that the inequalities of Theorems 1.1 and 1.2
are trivially true for bounded s, so that we may clearly
assume that s > 40. By a similar argument, we can also
assume that s is even. In addition, in both statements it
is clearly enough to assume that f maps G into H = R.

We begin with the the proof of Theorem 1.2. Let G
satisfy the conditions of Theorem 1.2 and consider the
following matrix:

Q=al — A+ BAY,

yn € [-2vE —1,2vk — 1),



where 40 < s < g/2 is an even integer, and:

ePs(k)

=k —Phi—o

€

— Py(k—e¢)’

B = P, (k)

We claim that @ € B,. Now, Q is clearly symmetric.
Also, since AT = kI, A®T = P,(k)T so that QT =
0. Other than the eigenvalue k, the spectrum of A is
in [—k,k — €], so @ will be shown to be positive semi-
definite if for all z € [k, k — €]

a—z+ BPs(x) >0,

which is precisely the statement of Lemma 3.2.
Now, for every f: V(G) — R we get that:

0<(Qf.f)=
=a ) fw)’ -

weV(QG)

Y. Awfw)f(o)+

u,vEV(QG)

B Y. AN fw)f) =

u,vEV(Q)

=3 3 1w - )P -

wveEE(G)

OTESY

> Ifw) = f@)I

dg(u,v)=s

where in the last equality we have used the fact that
a —k+ BP,(k) = 0. Hence:

3 If(u)—f(v)IQS% 3 Ifw) - f) =

dg(u,v)=s w€E(G)

IR g AL o
SMESDT B ]MEZE@W") F)

1_67053/k 9
<Ok —1) - ——r > 1f(w) - f)I%

wv€ E(G)

where we have used Corollary 3.4.

The proof of Theorem 1.1 runs along the same lines.
‘We return to the above construction and let ¢ — 0. This
yields a matrix:

P, (k) 1
Pi(k) Pj(k)

which by continuity is in B, as well. Arguing as above,
we get the following inequality:

Yo @) = f@IP <Pik) Yo |f(w) — fo)

wveEE(QG)

A(S)7

o= -

dg (u,v)=s

_sk— 1)t —2(k—1)° —s(k—1)° ' 42
- (k—2)? '

o Ifw) = )P,

wvE€E(G)

which implies the required result. [

3.4 Proof of Theorem 1.3

‘We now deduce Theorem 1.3 from Theorems 1.1 and
1.2. Let G be a k-regular graph (k > 3) with girth g.
Take any embedding f : V(G) — {2 such that for every
u,v € V(G)

1 lf(w) = f()]
D s da(u,v) st

Set s = [g/2] — 1. Since there are k(k — 1)*™" vertices
of distance s from a fixed vertex we get that:

3 ) - f@)P > Wf—l];‘ V@)l

dg(u,v)=s

and
Y I = f@)I* <KV(G).
wveEE(Q)

Theorem 1.1 now gives that:

s’k(k —1)° |V (G)|

D2

so that c3(G) > ¢'/g. If in addition we assume that G
has a spectral gap ¢, this reasoning gives:

< Cs(k—1)° V(G|

e/k cd'g

>

which finishes the proof of Theorem 1.3.

e(G)>dyg

4. THERELATIONSHIPBETWEENTHE
TWO METHODS

The proof of the Markov type 2 property of Euclidean
space in [1], sheds some light on the connection between
the two methods. In Proposition 3.1 we seek the matrix
Q with maximal §(Q, d) over all @Q € B,,. We will show
how to view Corollary 2.2 as a restriction of Proposition
3.1, in the sense that only a subset of the matrices in
B,, can be used for the lower bound.

Let B be the symmetric stochastic transition matrix
defining the Markov chain, and let v € (0,1). Now
define

2y —1 1—~)2
r=2"11_py L= 5 py
0 A~

The spectrum of B clearly determines that of R: If A

2
is an eigenvalue of B, then 277_1 - A+ % is an

eigenvalue of R. This expression is nonnegative for A €
[-1,1], and 0 for A = 1. This clearly means that R €

B,. Ifz1,... ,z, are vectors in an Euclidean space then,
E Rijllzi —zj||” <0
i, || il s,
i,J
and so

Q=D O (B isllwi — z5]* <
ij 1

2
’YE Bij|lz; — z;5]|".
i



As Ball shows by taking v =1 — %, this is equivalent
to the fact that Euclidean space has Markov type 2. To
be more precise, this is the original definition he gives
to the metric property “having a Markov type 2”.

Thus the approach via Markov type can be viewed as
a specialized version of the semidefinite programming
method. This method is incomplete in that not every
matrix in B,, is attained from the above transformation
of symmetric stochastic matrices. This method is still
very useful, in that it allows one to draw on geomet-
ric and probabilistic intuitions. In contrast, the semi-
definite approach greatly depends on successful clever
guesses of the matrix Q.

The Poincaré inequality method can also be viewed
as a restriction of the family B,,. Indeed, if G is a graph
and B is any matrix such that By, = 0 whenever « and
v are not neighbors in G, then for any matrix C and
a € R, the fact that the matrix af — B + C is in B, is
equivalent to the Poincaré inequality:

Y. Culf(w)=f@I < Y Buwlf(w) = f(o),
u,vEV(G) w€E(G)

for every f : V(G) — R. Thus, all the existing lower
bounds for ca2(-) are based on the study of the above
subset of B,, which leads to geometrically intuitive,

Poincaré inequality reasons for non-embeddability of graphs

in Euclidean space. Hence, in a sense, the full strength
of Proposition 3.1 is yet to be fully exploited.

The second part of Theorem 1.3 cannot be derived
from Markov type considerations. Indeed, let G be any
graph. If {Z;}3%, is a symmetric Markov chain on G
such that P(Zyq1 = u|Zr = u) = 0 for every u € V(G)
then clearly E d% (Zr, Zo) < diam(G)’E d%(Z1, Zo) and

by the triangle inequality B d%(Z7, Zo) < T°E d%(Z1, Zo).

Hence, for every T,

M>(G) < min {M,T} ,
VT
which implies that M>(G) = O(diam(G)?/3), while our
second proof of Theorem 1.3 showed that there are graphs
with ¢2(G) = Q(diam(G)).

5. DISCUSSION

An interesting problem that still remains open is the
determination of the worst possible behavior of ¢2(G)
over all k-regular, £ > 3, graphs with girth g. Our
present methods seem to break at ,/g. On the other
hand if k-regular graphs, G, with girth g and c2(G) =
O(,/g) exist, they cannot be expanders in view of the
known lower bound for the Euclidean distortion of ex-
panders. This observation rules out most known con-
structions for graphs with large girth. Although ex-
amples of k-regular graphs with large girth which are
not expanders are known, these specific examples seem
highly complicated and far from Euclidean.

It is interesting to note that we know literally noth-
ing about the effect of high girth on ¢; embeddings.
Let G be a graph in which all vertex degrees are > 2
and suppose that G has girth g. Can we derive any
lower bound on ¢1(G) that tends to co with g 7 The
analogous question for cp was relatively easy, since G

contains an isometric copy of a complete binary tree of
depth g/2, and such trees do not embed into ¢, with
constant distortion. On the other hand, they do embed
into ¢; isometrically. Hence the problem.
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