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Abstract. We study various SDP formulations for Vertex Cover by
adding different constraints to the standard formulation. We rule out
approximations better than 2 − O(

p
log log n/ log n) even when we add

the so-called pentagonal inequality constraints to the standard SDP for-
mulation, and thus almost meet the best upper bound known due to
Karakostas, of 2 − Ω(

p
1/ log n). We further show the surprising fact

that by strengthening the SDP with the (intractable) requirement that
the metric interpretation of the solution embeds into `1 with no distor-
tion, we get an exact relaxation (integrality gap is 1), and on the other
hand if the solution is arbitrarily close to being `1 embeddable, the in-
tegrality gap is 2− o(1). Finally, inspired by the above findings, we use
ideas from the integrality gap construction of Charikar to provide a fam-
ily of simple examples for negative type metrics that cannot be embedded
into `1 with distortion better than 8/7− ε. To this end we prove a new
isoperimetric inequality for the hypercube.

1 Introduction

A vertex cover in a graph G = (V,E) is a set S ⊆ V such that every edge e ∈ E
intersects S in at least one endpoint. Denote by vc(G) the size of the minimum
vertex cover of G. It is well-known that the minimum vertex cover problem has
a 2-approximation algorithm, and it is widely believed that for every constant
ε > 0, there is no (2 − ε)-approximation algorithm for this problem. Currently
the best known hardness result for this problem, based on the PCP theorem,
shows that 1.36-approximation is NP-hard [1]. If we were to assume the Unique
Games Conjecture [2] the problem would be essentially settled as 2−Ω(1) would
then be NP-hard [3].

In [4], Goemans and Williamson introduced semidefinite programming as a
tool for obtaining approximation algorithms. Since then semidefinite program-
ming has become an important technique, and for many problems the best known
approximation algorithms are obtained by solving an SDP relaxation of them.
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The best known algorithms for Vertex Cover compete in “how big is
the little oh” in the 2 − o(1) factor. The best two are in fact based on SDP
relaxations: Halperin [5] gives a (2−Ω(log log ∆/ log ∆))-approximation where ∆
is the maximal degree of the graph while Karakostas obtains a (2−Ω(1/

√
log n))-

approximation [6].
The standard way to formulate the Vertex Cover problem as a quadratic

integer program is the following:

Min
∑

i∈V (1 + x0xi)/2
s.t. (xi − x0)(xj − x0) = 0 ∀ ij ∈ E

xi ∈ {−1, 1} ∀ i ∈ {0} ∪ V,

where the set of the vertices i for which xi = x0 correspond to the vertex cover.
Relaxing this integer program to a semidefinite program, the scalar variable xi

becomes a vector vi and we get:

Min
∑

i∈V (1 + v0vi)/2
s.t. (vi − v0) · (vj − v0) = 0 ∀ ij ∈ E

‖vi‖ = 1 ∀ i ∈ {0} ∪ V.
(1)

Kleinberg and Goemans [7] proved that SDP (1) has integrality gap of 2− o(1):
given ε > 0 they construct a graph Gε for which vc(Gε) is at least (2 − ε)
times larger than the solution to SDP (1). They also suggested the following
strengthening of SDP (1) and left its integrality gap as an open question:

Min
∑

i∈V (1 + v0vi)/2
s.t. (vi − v0) · (vj − v0) = 0 ∀ ij ∈ E

(vi − vk) · (vj − vk) ≥ 0 ∀ i, j, k ∈ {0} ∪ V
‖vi‖ = 1 ∀ i ∈ {0} ∪ V.

(2)

Charikar [8] answered this question by showing that the same graph Gε but a
different vector solution satisfies SDP (2)1 and gives rise to an integrality gap of
2− o(1) as before. The following is an equivalent formulation to SDP (2):

Min
∑

i∈V 1− ‖v0 − vi‖2/4
s.t. ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2 ∀ ij ∈ E

‖vi − vk‖2 + ‖vj − vk‖2 ≥ ‖vi − vj‖2 ∀ i, j, k ∈ {0} ∪ V
‖vi‖ = 1 ∀ i ∈ {0} ∪ V

(3)

Viewing SDPs as relaxations over `1: The above reformulation reveals a
connection to metric spaces. The second constraint in SDP (3) says that ‖ · ‖2
induces a metric on {vi : i ∈ {0} ∪ V }, while the first says that v0 is on
the shortest path between the images of every two neighbours. This suggests
a more careful study of the problem from the metric viewpoint which is the
purpose of this article. Such connections are also important in the context of
1 To be more precise, Charikar’s result was about a slightly weaker formulation than

(2) but it is not hard to see that the same construction works for SDP (2) as well.



the Sparsest Cut problem, where the natural SDP relaxation was analyzed in
the breakthrough work of Arora, Rao and Vazirani [9] and it was shown that
its integrality gap is at most O(

√
log n). This later gave rise to some significant

progress in the theory of metric spaces [10, 11].
Let f : (X, d) → (X ′, d′) be an embedding of metric space (X, d) into another

metric space (X ′, d′). The value supx,y∈X
d′(f(x),f(y))

d(x,y) × supx,y∈X
d(x,y)

d′(f(x),f(y)) is
called the distortion of f . For a metric space (X, d), let c1(X, d) denote the
minimum distortion required to embed (X, d) into `1. Notice that c1(X, d) = 1
if and only if (X, d) can be embedded isometrically into `1, namely without
changing any of the distances. Consider a vertex cover S and its corresponding
solution to SDP (2), i.e., vi = 1 for every i ∈ S ∪ {0} and vi = −1 for every
i 6∈ S. The metric defined by ‖ · ‖2 on this solution (i.e., d(i, j) = ‖vi − vj‖2)
is isometrically embeddable into `1. Thus we can strengthen SDP (2) by al-
lowing any arbitrary list of valid inequalities in `1 to be added. The triangle
inequality is one type of such constraints. The next natural inequality of this
sort is the pentagonal inequality: A metric space (X, d) is said to satisfy the pen-
tagonal inequality if for S, T ⊂ X of sizes 2 and 3 respectively it holds that∑

i∈S,j∈T d(i, j) ≥
∑

i,j∈S d(i, j) +
∑

i,j∈T d(i, j). Note that this inequality does
not apply to every metric, but it does hold for those that are `1-embeddable.
This leads to the following natural strengthening of SDP (3):

Min
∑

i∈V 1− ‖v0 − vi‖2/4
s.t. ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2 ∀ ij ∈ E∑

i∈S,j∈T ‖vi − vj‖2 ≥
∑

i,j∈S ‖vi − vj‖2+∑
i,j∈T ‖vi − vj‖2

∀ S, T ⊆ {0} ∪ V,
|S| = 2, |T | = 3

‖vi‖ = 1 ∀ i ∈ {0} ∪ V

(4)

In Theorem 5, we prove that SDP (4) has an integrality gap of 2 − o(1).
It is important to point out that a-priori there is no reason to believe that
local addition of inequalities such as these will be useless; indeed in the case of
Sparsest Cut where triangle inequality is necessary to achieve the O(

√
log n)

bound mentioned above. It is interesting to note that for Sparsest Cut, it is
not known how to show a nonconstant integrality gap against pentagonal (or
any other k-gonal) inequalities, although recently a nonconstant integrality gap
was shown in [12] and later in [13], in the presence of the triangle inequalities2.

A recent result by Georgiou, Magen, Pitassi and Tourlakis [14] shows and
integrality gap of 2 − o(1) for a nonconstant number of rounds of the so-called
LS+ system for Vertex Cover. It is not known whether this result subsumes
Theorem 5 or not, since pentagonal inequalities are not generally implied by
any number of rounds of the LS+ procedure. We elaborate more on this in the
Discussion section.

One can further impose any `1-constraint not only for the metric defined by
{vi : i ∈ V ∪{0}}, but also for the one that comes from {vi : i ∈ V ∪{0}}∪{−vi :

2 As Khot and Vishnoi note, and leave as an open problem, it is possible that their
example satisfies some or all k-gonal inequalities.



i ∈ V ∪ {0}}. Triangle inequalities for this extended set result in constraints
‖vi−vj‖2 +‖vi−vk‖2 +‖vj−vk‖2 ≤ 2. The corresponding tighter SDP is used
in [6] to get integraility gap of at most 2−Ω( 1√

log n
). Karakostas [6] asks whether

the integrality gap of this strengthening breaks the “2-o(1) barrier”: we answer
this negatively in Section 4.3. In fact we show that the above upper bound is
almost asymptotically tight, exhibiting integrality gap of 2−O(

√
log log n

log n ).

Integrality gap with respect to `1 embeddability: At the extreme, strength-
ening the SDP with `1-valid constraints, would imply the condition that the
metric defined by ‖ · ‖ on {vi : i ∈ {0} ∪ V }, namely d(i, j) = ‖vi − vj‖2 is `1
embeddable. Doing so leads to the following intractable program:

Min
∑

i∈V 1− ‖v0 − vi‖2/4
s.t. ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2 ∀ ij ∈ E

‖vi‖ = 1 ∀ i ∈ {0} ∪ V
c1({vi : i ∈ {0} ∪ V }, ‖ · ‖2) = 1

(5)

In [15], it is shown that an SDP formulation of Minimum Multicut, even
with the constraint that the ‖ · ‖2 distance over the variables is isometrically
embeddable into `1, still has a large integrality gap. For the Max Cut problem,
which is more intimately related to our problem, it is easy to see that `1 em-
beddability does not prevent integrality gap of 8/9. It is therefore tempting to
believe that there is a large integrality gap for SDP (5) as well. Surprisingly, SDP
(5) has no gap at all: we show in Theorem 2, that the value of SDP (5) is exactly
the size of the minimum vertex cover. A consequence of this fact is that any
feasible solution to SDP (2) that surpasses the minimum vertex cover induces
an `22 metric which is not isometrically embeddable into `1. This includes the
integrality gap constructions of Kleinberg and Goemans, and that of Charikar’s
for SDPs (2) and (3) respectively. The construction of Charikar provides not
merely `22 distance function but also a negative type metric, that is an `22 metric
that satisfies triangle inequality. See [16] for background and nomenclature.

In contrast to Theorem 2, we show in Theorem 3 that if we relax the embed-
dability constraint in SDP (5) to c1({vi : i ∈ {0} ∪ V }, ‖ · ‖2) ≤ 1 + δ for any
constant δ > 0, then the integrality gap may “jump” to 2− o(1). Compare this
with a problem such as Sparsest Cut in which an addition of such a constraint
immediately implies integrality gap at most 1 + δ.

Negative type metrics that are not `1 embeddable: Negative type metrics
are metrics which are the squares of Euclidean distances of set of points in
Euclidean space. Inspired by Theorem 2, we construct a simple negative type
metric space (X, ‖ · ‖2) that does not embed well into `1. Specifically, we get
c1(X) ≥ 8

7−ε for every ε > 0. In order to show this we prove a new isoperimetric
inequality for the hypercube Qn = {−1, 1}n, which we believe is of independent
interest.

Theorem 1. (Generalized Isoperimetric inequality) For every set S ⊆ Qn,

|E(S, Sc)| ≥ |S|(n− log2 |S|) + p(S).



where p(S) denotes the number of vertices u ∈ S such that −u ∈ S.

Khot and Vishnoi [12] constructed an example of an n-point negative type
metric that for every δ > 0 requires distortion at least (log log n)1/6−δ to embed
into `1. Krauthgamer and Rabani [17] showed that in fact Khot and Vishnoi’s
example requires a distortion of at least Ω(log log n). Later Devanur, Khot, Saket
and Vishnoi [13] showed an example with distortion Ω(log log n) even on average
when embedded into `1 (we note that our example is also “bad” on average).
Although the above examples require nonconstant distortion to embed into `1, we
believe that Theorem 6 is interesting because of its simplicity (to show triangle
inequality holds proves to be extremely technical in [12, 13]). Prior to Khot and
Vishnoi’s result, the best known lower bounds (see [12]) were due to Vempala,
10/9 for a metric obtained by a computer search, and Goemans, 1.024 for a
metric based on the Leech Lattice. We mention that by [11] every negative type
metric embeds into `1 with distortion O(

√
log n log log n).

2 Preliminaries and notation

A vertex cover of a graph G is a set of vertices that touch all edges. An inde-
pendent set in G is a set I ⊆ V such that no edge e ∈ E joins two vertices in I.
We denote by α(G) the size of the maximum independent set of G. Vectors are
always denoted in bold font (such as v, w, etc.); ‖v‖ stands for the Euclidean
norm of v, u · v for the inner product of u and v, and u ⊗ v for their tensor
product. Specifically, if v,u ∈ Rn, u⊗ v is the vector with coordinates indexed
by ordered pairs (i, j) ∈ [n]2 that assumes value uivj on coordinate (i, j). Sim-
ilarly, the tensor product of more than two vectors is defined. It is easy to see
that (u ⊗ v).(u′ ⊗ v′) = (u · u′)(v · v′). For two vectors u ∈ Rn and v ∈ Rm,
denote by (u,v) ∈ Rn+m the vector whose projection to the first n coordinates
is u and to the last m coordinates is v.

Next, we give a few basic definitions and facts about finite metric spaces. A
metric space (X, dX) embeds with distortion at most D into (Y, dY ) if there exists
a mapping φ : X 7→ Y so that for all a, b ∈ X γ · dX(a, b) ≤ dY (φ(a), φ(b)) ≤
γD · dX(a, b), for some γ > 0. We say that (X, d) is `1 embeddable if it can be
embedded with distortion 1 into Rm equipped with the `1 norm. An `22 distance
on X is a distance function for which there there are vectors vx ∈ Rm for every
x ∈ X so that d(x, y) = ‖vx−vy‖2. If, in addition, d satisfies triangle inequality,
we say that d is an `22 metric or negative type metric. It is well known [16] that
every `1 embeddable metric is also a negative type metric.

3 `1 and integrality gap of SDPs for Vertex Cover – an
“all or nothing” phenomenon

It is well known that for Sparsest Cut there is a tight connection between
`1 embeddability and integrality gap. In fact the integrality gap is bounded
above by the least `1 distortion of the SDP solution. At the other extreme



stand problems like Max Cut and Multi Cut, where `1 embeddability does
not provide any strong evidence for small integrality gap. In this section we
show that Vertex Cover falls somewhere between these two classes of `1-
integrality gap relationship witnessing a sharp transition in integrality gap in
the following sense: while `1 embeddability implies no integrality gap, allowing
a small distortion, say 1.001 does not prevent integrality gap of 2− o(1)!

Theorem 2. For a graph G = (V,E), the answer to the SDP formulated in
SDP (5) is the size of the minimum vertex cover of G.

Proof. Let d be the metric solution of SDP (5). We know that d is the result
of an `22 unit representation (i.e., it comes from square norms between unit
vectors), and furthermore it is `1 embeddable. By a well known fact about `1
embeddable metrics (see, e.g. [16]) we can assume that there exist λt > 0 and
ft : {0} ∪ V → {−1, 1}, t = 1, . . . ,m, such that

‖vi − vj‖2 =
m∑

t=1

λt|ft(i)− ft(j)|, (6)

for every i, j ∈ {0}∪V . Without loss of generality, we can assume that ft(0) = 1
for every t. For convenience, we switch to talk about Independent Set and
its relaxation, which is the same as SDP (5) except the objective becomes
Max

∑
i∈V ‖v0 − vi‖2/4. Obviously, the theorem follows from showing that this

is an exact relaxation.
We argue that (i) It = {i ∈ V : ft(i) = −1} is a (nonempty) independent set

for every t, and (ii)
∑

λt = 2. Assuming these two statements we get

∑
i∈V

‖vi − v0‖2

4
=
∑
i∈V

∑m
t=1 λt|1− ft(i)|

4
=

m∑
t=1

λt|It|
2

≤ max
t∈[m]

|It| ≤ α(G),

and so the relaxation is exact and we are done.
We now prove the two statements. The first is rather straightforward: For

i, j ∈ It, (6) implies that d(i, 0) + d(0, j) > d(i, j). It follows that ij cannot be
an edge else it would violate the first condition of the SDP. (We may assume
that It is nonempty since otherwise the ft(·) terms have no contribution in (6).)
The second statement is more surprising and uses the fact that the solution is
optimal. The falsity of such a statement for the problem of Max Cut (say)
explains the different behaviour of the latter problem with respect to integrality
gaps of `1 embeddable solutions. We now describe the proof.

Let v′i = (
√

λ1/2f1(i), . . . ,
√

λm/2fm(i), 0). From (6) we conclude that ‖v′i−
v′j‖2 = ‖vi − vj‖2, hence there exists a vector w = (w1, w2, ..., wm+1) ∈ Rm+1

and an orthogonal transformation T , such that vi = T (v′i + w). We know that

1 = ‖vi‖2 = ‖T (v′i + w)‖2 = ‖v′i + w‖2 = w2
m+1 +

m∑
t=1

(
√

λt/2ft(i) + wt)2. (7)



Since ‖v′i‖2 = ‖v′0‖2 =
∑m

t+1 λt/2, for every i ∈ V ∪ {0}, from (7) we get
v′0 ·w = v′i ·w. Summing this over all i ∈ V , we have

|V |(v′0 ·w) =
∑
i∈V

v′i ·w =
m∑

t=1

(|V | − 2|It|)
√

λt/2wt,

or
m∑

t=1

|V |
√

λt/2wt =
m∑

t=1

(|V | − 2|It|)
√

λt/2wt,

and therefore
m∑

t=1

|It|
√

λt/2wt = 0. (8)

Now (7) and (8) imply that

max
t∈[m]

|It| ≥
m∑

t=1

(
√

λt/2ft(0)+wt)2|It| =
m∑

t=1

(
λt|It|

2
+ w2

t |It|
)
≥

m∑
t=1

λt|It|
2

. (9)

As we have observed before
m∑

t=1

λt|It|
2

=
∑
i∈V

‖vi − v0‖2

4

which means (as clearly
∑

i∈V
‖vi−v0‖2

4 ≥ α(G)) that the inequalities in (9) must
be tight. Now, since |It| > 0 we get that w = 0 and from (7) we get the second
statement, i.e.,

∑
λt = 2. This concludes the proof. ut

Now let δ be an arbitrary positive number, and let us relax the last constraint
in SDP (5) to get

Min
∑

i∈V 1− ‖v0 − vi‖2/4
s.t. ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2 ∀ ij ∈ E

‖vi‖ = 1 ∀ i ∈ {0} ∪ V
c1({vi : i ∈ {0} ∪ V }, ‖ · ‖2) ≤ 1 + δ

Theorem 3. For every ε > 0, there is a graph G for which vc(G)
sd(G) ≥ 2− ε, where

sd(G) is the solution to the above SDP.

The proof appears in the next section after we describe Charikar’s construction.

4 Integrality gap for stronger semidefinite formulations

In this section we discuss the integrality gap for stronger semidefinite formula-
tions of vertex cover. In particular we show that Charikar’s construction satisfies
both SDPs (11) and (4). We start by describing this construction.



4.1 Charikar’s construction

The graphs used in the construction are the so-called Hamming graphs. These
are graphs with vertices {−1, 1}n and two vertices are adjacent if their Hamming
distance is exactly an even integer d = γn. A result of Frankl and Rödl [18] shows
that vc(G) ≥ 2n − (2 − δ)n, where δ > 0 is a constant depending only on γ. In
fact, when one considers the exact dependency of δ in γ it can be shown (see [14])
that as long as γ = Ω(

√
log n/n) then any vertex cover comprises 1 − O(1/n)

fraction of the graph. Kleinberg and Goemans [7] showed that by choosing a
constant γ and n sufficiently large, this graph gives an integrality gap of 2 − ε
for SDP (1). Charikar [8] showed that in fact G implies the same result for the
SDP formulation in (2) too. To this end he introduced the following solution to
SDP (2):

For every ui ∈ {−1, 1}n, define u′i = ui/
√

n, so that u′i·u′i = 1. Let λ = 1−2γ,
q(x) = x2t + 2tλ2t−1x and define y0 = (0, . . . , 0, 1), and

yi =

√
1− β2

q(1)

u′i ⊗ . . .⊗ u′i︸ ︷︷ ︸
2t times

,
√

2tλ2t−1u′i, 0

+ βy0,

where β will be determined later. Note that yi is normalized to satisfy ‖yi‖ = 1.
Moreover yi is defined so that yi · yj takes its minimum value when ij ∈ E,

i.e., when u′i · u′j = −λ. As is shown in [8], for every ε > 0 we may set t =
Ω( 1

ε ), β = Θ(1/t), γ = 1
4t to get that (y0 − yi) · (y0 − yj) = 0 for ij ∈ E, while

(y0 − yi) · (y0 − yj) ≥ 0 always.
Now we verify that all the triangle inequalities, i.e., the second constraint

of SDP (2) are satisfied: First note that since every coordinate takes only two
different values for the vectors in {yi : i ∈ V }, it is easy to see that c1({yi :
i ∈ V }, ‖ · ‖2) = 1. So the triangle inequality holds when i, j, k ∈ V . When
i = 0 or j = 0, the inequality is trivial, and it only remains to verify the case
that k = 0, i.e., (y0 − yi) · (y0 − yj) ≥ 0, which was already mentioned above.
Now

∑
i∈V (1 + y0 · yi)/2 = 1+β

2 · |V | =
(

1
2 + O(ε)

)
|V |. In our application, we

prefer to set γ and ε to be Ω(
√

log log n
log n ) and since, by the above comment,

vc(G) = (1−O(1/n))|V | the integrality gap we get is

(1−O(1/n))/(1/2 + O(ε)) = 2−O(ε) = 2−O

(√
log log |V |

log |V |

)
.

4.2 Proof of Theorem 3

We show that the negative type metric implied by Charikar’s solution (after
adjusting the parameters appropriately) requires distortion of at most 1+ δ. Let
yi and u′i be defined as in Section 4.1. To prove Theorem 3, it is sufficient to
prove that c1({yi : i ∈ {0} ∪ V }, ‖ · ‖2) = 1 + o(1). Note that every coordinate



of yi for all i ∈ V takes at most two different values. It is easy to see that this
implies c1({yi : i ∈ V }, ‖ · ‖2) = 1. In fact

f : yi 7→
1− β2

q(1)

 2
nt

u′i ⊗ . . .⊗ u′i︸ ︷︷ ︸
2t times

,
2√
n

2tλ2t−1u′i

 , (10)

is an isometry from ({yi : i ∈ V }, ‖ · ‖2) to `1. For i ∈ V , we have

‖f(yi)‖1 =
1− β2

q(1)

(
2
nt
× n2t

nt
+

2√
n

2tλ2t−1 1√
n

+ 0
)

=
1− β2

q(1)
× (2 + 4tλ2t−1)

Since β = Θ( 1
t ), recalling that λ = 1− 1

2t , it is easy to see that for every i ∈ V ,
limt→∞ ‖f(yi)‖1 = 2. On the other hand for every i ∈ V

lim
t→∞

‖yi − y0‖2 = lim
t→∞

2− 2(yi · y0) = lim
t→∞

2− 2β = 2.

So if we extend f to {yi : i ∈ V ∪ {0}} by defining f(y0) = 0, we obtain a
mapping from ({yi : i ∈ V ∪ {0}}, ‖ · ‖2) to `1 whose distortion tends to 1 as t
goes to infinity. ut

4.3 Karakostas’ and pentagonal SDP formulations

Karakostas suggests the following SDP relaxation, that is the result of adding
to SDP (3) the triangle inequalities applied to the set {vi : i ∈ V ∪{0}}∪{−vi :
i ∈ V ∪ {0}}.

Min
∑

i∈V (1 + v0vi)/2
s.t. (vi − v0) · (vj − v0) = 0 ∀ ij ∈ E

(vi − vk) · (vj − vk) ≥ 0 ∀ i, j, k ∈ V
(vi + vk) · (vj − vk) ≥ 0 ∀ i, j, k ∈ V
(vi + vk) · (vj + vk) ≥ 0 ∀ i, j, k ∈ V
‖vi‖ = 1 ∀ i ∈ {0} ∪ V.

(11)

Theorem 4. The integrality gap of SDP (11) is 2−O(
√

log log |V |/ log |V |).

Proof. We show that Charikar’s construction satisfies formulation (11). By [8]
and from the discussion in Section 4.1, it follows that all edge constraints and
triangle inequalities of the original points hold. Hence we need only consider
triangle inequalities with at least one nonoriginal point. By homogeneity, we
may assume that there is exactly one such point.

Since all coordinates of yi for i > 0 assume only two values with the same
absolute value, it is clear that not only does the metric they induce is `1 but also
taking ±yi for i > 0 gives an `1 metric; in particular all triangle inequalities that
involve these vectors are satisfied. In fact, we may fix our attention to triangles
in which ±y0 is the middle point. This is since

(±yi −±yj) · (y0 −±yj) = (±yj − y0) · (∓yi − y0).



Consequently, and using symmetry, we are left with checking the nonnega-
tivity of (yi + y0) · (yj + y0) and (−yi − y0) · (yj − y0).

(yi+y0)·(yj+y0) = 1+y0·(yi+yj)+yi·yj ≥ 1+2β+β2−(1−β2) = 2β(1+β) ≥ 0.

Finally, (−yi − y0) · (yj − y0) = 1 + y0 · (yi − yj)− yi · yj = 1− yi · yj ≥ 0 as
yi,yj are of norm 1. ut

By now we know that taking all the `1 constraints leads to an exact relax-
ation, but not a tractable one. Our goal here is to explore the possibility that
stepping towards `1 embeddability while still maintaining computational feasi-
bility would considerably reduce the integrality gap. A canonical subset of valid
inequalities for `1 metrics is the so-called Hypermetric inequalities. Again, tak-
ing all these constraints is not feasible, and we instead consider the effect of
adding a small number of such constraints. The simplest hypermetric inequali-
ties beside triangle inequalities are the pentagonal inequalities. These constraints
consider two sets of points of size 2 and 3, and require that the sum of the dis-
tances between points in different sets is at least the sum of the distances within
sets. Formally, let S, T ⊂ X, |S| = 2, |T | = 3, then we have the inequality∑

i∈S,j∈T d(i, j) ≥
∑

i,j∈S d(i, j) +
∑

i,j∈T d(i, j). To appreciate this inequality
it is useful to describe where it fails. Consider the graph metric of K2,3. Here, the
LHS of the inequality is 6 and the RHS is 8, hence K2,3 violates the pentagonal
inequality. In the following theorem we show that this strengthening past the
triangle inequalities fails to reduce the integrality gap significantly.

Theorem 5. The integrality gap of SDP (4) is 2−O(
√

log log |V |/ log |V |).

Proof. We show that the metric space used in Charikar’s construction is feasible.
By ignoring y0 the space defined by d(i, j) = ‖yi − yj‖2 is `1 embeddable.
Therefore, we wish to consider a pentagonal inequality containing y0 and four
other vectors, denoted by y1,y2,y3,y4. Assume first that the partition of the
five points in the inequality puts y0 together with two other points; then, using
the fact that d(0, 1) = d(0, 2) = d(0, 3) = d(0, 4) and triangle inequality we get
that such an inequality must hold. It remains to consider a partition of the form
({y1,y2,y3}, {y4,y0}), and show that:

d(1, 2)+d(1, 3)+d(2, 3)+d(0, 4) ≤ d(1, 4)+d(2, 4)+d(3, 4)+d(0, 1)+d(0, 2)+d(0, 3)

Recall that every yi is associated with a {−1, 1} vector ui and with its
normalized multiple u′i. After substituting the distances as functions of the nor-
malized vectors, our goal will then be to show:

q(u′1 ·u′2)+q(u′1 ·u′3)+q(u′2 ·u′3)−q(u′1 ·u′4)−q(u′2 ·u′4)−q(u′3 ·u′4) ≥ − 2q(1)
1 + β

(12)

Let E = q(u′1 ·u′2)+q(u′1 ·u′3)+q(u′2 ·u′3)−q(u′1 ·u′4)−q(u′2 ·u′4)−q(u′3 ·u′4). The
rest of the proof analyzes the minima of the function E and ensures that (12)
is satisfied at those minima. We first partition the coordinates of the original



hypercube into four sets according to the values assumed by u1,u2 and u3.
We may assume that in any coordinate at most one of these get the value 1
(otherwise multiply the values of the coordinate by −1). We get four sets, P0 for
the coordinates in which all three vectors assume value −1, and P1, P2, P3 for
the coordinates in which exactly u1,u2,u3 respectively assumes value 1.

We now argue about the coordinates of u4 at a minimum of E.

Proposition 1. If there is a violating configuration, then there is one in which
u4 is either all 1 or all −1 on each one of P0, P1, P2, P3

For P0, we can in fact say something stronger than we do for P1, P2, P3:

Proposition 2. If there is a violating configuration, then there is one in which
u4 has all the P0 coordinates set to −1.

Proposition 1 is based solely on the (strict) convexity of q. Proposition 2 is more
involved and uses more properties of the polynomial q. Due to lack of space we
omit the proofs of the propositions from this version.

The above characterizations significantly limit the type of configurations we
need to check. The cases that are left are characterized by whether u4 is 1 or
−1 on each of P1, P2, P3. By symmetry all we really need to know is ξ(u4) =
|{i : u4 is 1 on Pi}|. If ξ(u4) = 1 it means that u4 is the same as one of u1,u2

or u4 hence the pentagonal inequality reduces to the triangle inequality, which
we already know is valid. If ξ(u4) = 3, it is easy to see that u′1u

′
4 = u′2u

′
3, and

likewise u′2u
′
4 = u′1u

′
3 and u′3u

′
4 = u′1u

′
2 hence E is 0 for these cases, which

means that (12) is satisfied.
We are left with the cases ξ(u4) ∈ {0, 2}.

Case 1: ξ(u4) = 0
Let x = 2

n |P1|, y = 2
n |P2|, z = 2

n |P3|. Notice that x + y + z = 2
n (|P1|+ |P2|+

|P3|) ≤ 2, as these sets are disjoint. Now, think of

E = q(1− (x+y))+ q(1− (x+ z))+ q(1− (y + z))− q(1−x)− q(1−y)− q(1− z)

as a function from R3 to R. We will show that E achieves its minimum at points
where either x, y or z are zero. Assume that 0 ≤ x ≤ y ≤ z.

Consider the function g(δ) = E(x− δ, y + δ, z). It is easy to see that g′(0) =
q′(1 − (x + z)) − q′(1 − (y + z)) − q′(1 − x) + q′(1 − y). We will prove that
g′(δ) ≤ 0 for every δ ∈ [0, x]. This, by the Mean Value Theorem implies that
E(0, x + y, z) ≤ E(x, y, z), and hence we may assume that x = 0. This means
that y1 = y4 which reduces to the triangle inequality on y0,y2,y3.

Note that in g′(0), the two arguments in the terms with positive sign have
the same average as the arguments in the terms with negative sign, namely
µ = 1−(x+y+z)/2. We now have g′(0) = q′(µ+b)−q′(µ+s)−q′(µ−s)+q′(µ−b),
where b = (x− y + z)/2, s = (−x + y + z)/2. After calculations:

g′(0) = 2t[(µ + b)2t−1 + (µ− b)2t−1 − (µ + s)2t−1 − (µ− s)2t−1]

= 4t
∑

i even

(
2t− 1

i

)
µ2t−1−i(bi − si)



Observe that µ ≥ 0. Since x ≤ y, we get that s ≥ b ≥ 0. This means that
g′(0) ≤ 0. It can be easily checked that the same argument holds if we replace
x, y by x− δ and y + δ. Hence g′(δ) ≤ 0 for every δ ∈ [0, x], and we are done.
Case 2: ξ(u4) = 2 The expression for E is now:

E = q(1−(x+y))+q(1−(x+z))+q(1−(y+z))−q(1−x)−q(1−y)−q(1−(x+y+z))

Although E(x, y, z) is different than in Case 1, the important observation
is that if we consider again the function g(δ) = E(x − δ, y + δ, z) then the
derivative g′(δ) is the same as in Case 1 and hence the same analysis shows
that E(0, x + y, z) ≤ E(x, y, z). But if x = 0, then y2 identifies with y4 and the
inequality reduces to the triangle inequality on y0,y1,y3. ut

5 Lower bound for embedding negative type metrics into
`1

While, in view of Theorem 3, Charikar’s metric does not supply an example
that is far from `1, we may still (partly motivated by Theorem 2) utilize the
idea of “tensoring the cube” and then adding some more points in order to
achieve negative type metrics that are not `1 embeddable. Our starting point is
an isoperimetric inequality on the cube that generalizes the standard one. Such
a setting is also relevant in [12, 17] where harmonic analysis tools are used to
bound expansion; these tools are unlikely to be applicable to our case where the
interest and improvements lie in the constants.

Theorem 1. (Generalized Isoperimetric inequality) For every set S ⊆ Qn,

|E(S, Sc)| ≥ |S|(n− log2 |S|) + p(S).

where p(S) denotes the number of vertices u ∈ S such that −u ∈ S.

Proof. We use induction on n. Divide Qn into two sets V1 = {u : u1 = 1} and
V−1 = {u : u1 = −1}. Let S1 = S ∩ V1 and S−1 = S ∩ V−1. Now, E(S, Sc) is
the disjoint union of E(S1, V1 \ S1), E(S−1, V−1 \ S−1), and E(S1, V−1 \ S−1) ∪
E(S−1, V1 \ S1). Define the operator ·̂ on Qn to be the projection onto the last
n − 1 coordinates, so for example Ŝ1 = {u ∈ Qn−1 : (1,u) ∈ S1}. It is easy to
observe that |E(S1, V−1 \ S−1) ∪ E(S−1, V1 \ S1)| = |Ŝ1∆Ŝ−1|. We argue that

p(S) + |S1| − |S−1| ≤ p(Ŝ1) + p(Ŝ−1) + |Ŝ1∆Ŝ−1|. (13)

To prove (13), for every u ∈ {−1, 1}n−1, we show that the contribution of (1,u),
(1,−u), (−1,u), and (−1,−u) to the right hand side of (13) is at least as large as
their contribution to the left hand side: This is trivial if the contribution of these
four vectors to p(S) is not more than their contribution to p(Ŝ1), and p(Ŝ−1).
We therefore assume that the contribution of the four vectors to p(S), p(Ŝ1),
and p(Ŝ−1) are 2, 0, and 0, respectively. Then without loss of generality we may



assume that (1,u), (−1,−u) ∈ S and (1,−u), (−1,u) 6∈ S, and in this case the
contribution to both sides is 2. By induction hypothesis and (13) we get

|E(S, Sc)| = |E(Ŝ1, Qn−1 \ Ŝ1|+ |E(Ŝ−1, Qn−1 \ Ŝ−1|+ |Ŝ1∆Ŝ−1|
≥ |S1|(n− 1− log2 |S1|) + p(Ŝ1) + |S−1|(n− 1− log2 |S−1|) + p(Ŝ−1) + |Ŝ1∆Ŝ−1|
≥ |S|n− |S| − (|S1| log2 |S1|+ |S−1| log2 |S−1|) + p(Ŝ1) + p(Ŝ−1) + |Ŝ1∆Ŝ−1|
≥ |S|n− (2|S−1|+ |S1| log2 |S1|+ |S−1| log2 |S−1|) + p(S).

Now the lemma follows from the fact that 2|S−1|+|S1| log2 |S1|+|S−1| log2 |S−1| ≤
|S| log2 |S|, which can be obtained using easy calculus. ut

We call a set S ⊆ Qn symmetric if −u ∈ S whenever u ∈ S. Note that
p(S) = |S| for symmetric sets S.

Corollary 1. For every symmetric set S ⊆ Qn

|E(S, Sc)| ≥ |S|(n− log2 |S|+ 1).

The corollary above implies the following Poincaré inequality.

Proposition 3. (Poincaré inequality for the cube and an additional point) Let
f : Qn ∪ {0} → Rm satisfy that f(u) = f(−u) for every u ∈ Qn, and let
α = ln 2

14−8 ln 2 .
Then the following Poincaré inequality holds.

1
2n
·8
7
(4α+1/2)

∑
u,v∈Qn

‖f(u)−f(v)‖1 ≤ α
∑

uv∈E

‖f(u)−f(v)‖1+
1
2

∑
u∈Qn

‖f(u)−f(0)‖1

Proof. It is enough to prove the above inequality for f : V → {0, 1}. We may
assume without loss of generality that f(0) = 0. Associating S with {u : f(u) =
1}, the inequality of the proposition reduces to

1
2n

8
7
(4α + 1/2)|S||Sc| ≤ α|E(S, Sc)|+ |S|/2, (14)

where S is a symmetric set, owing to the condition f(u) = f(−u). From the
isoperimetric inequality of Theorem 1 we have that |E(S, Sc)| ≥ |S|(x + 1) for
x = n− log2 |S| and so(

α(x + 1) + 1/2
1− 2−x

)
1
2n
|S||Sc)| ≤ α|E(S, Sc)|+ |S|/2.

It can be shown that α(x+1)+1/2
1−2−x attains its minimum in [1,∞) at x = 3 whence

α(x+1)+1/2
1−2−x ≥ 4α+1/2

7/8 , and Inequality (14) is proven. ut

Theorem 6. Let V = {ũ : u ∈ Qn} ∪ {0}, where ũ = u ⊗ u. Then for the
semi-metric space X = (V, ‖ · ‖2) we have c1(X) ≥ 8

7 − ε, for every ε > 0 and
sufficiently large n.



Proof. We start with an informal description of the proof. The heart of the
argument is showing that the cuts that participate in a supposedly good `1
embedding of X cannot be balanced on one hand, and cannot be imbalanced on
the other. First notice that the average distance in X is almost double that of
the distance between 0 and any other point (achieving this in a cube structure
without violating the triangle inequality was where the tensor operation came in
handy). For a cut metric on the points of X, such a relation only occurs for very
imbalanced cuts; hence the representation of balanced cuts in a low distortion
embedding cannot be large. On the other hand, comparing the (overall) average
distance to the average distance between neighbouring points in the cube shows
that any good embedding must use cuts with very small edge expansion, and
such cuts in the cube must be balanced (the same argument says that one must
use the dimension cuts when embedding the hamming cube into `1 with low
distortion). The fact that only symmetric cuts participate in the `1 embedding
(or else the distortion becomes infinite due to the tensor operation) enables us to
use the stronger isoperimetric inequality which leads to the current lower bound.
We now proceed to the proof.

We may view X as a distance function with points in u ∈ Qn ∪ {0}, and
d(u,v) = ‖ũ − ṽ‖2. We first notice that X is indeed a metric space, i.e., that
triangle inequalities are satisfied: notice that X \ {0} is a subset of {−1, 1}n2

.
Therefore, the square Euclidean distances is the same (upto a constant) as their
`1 distance. Hence, the only triangle inequality we need to check is ‖ũ− ṽ‖2 ≤
‖ũ− 0‖2 + ‖ṽ− 0‖2, which is implied by the fact that ũ · ṽ = (u · v)2 is always
nonnegative.

For every u,v ∈ Qn, we have d(u,0) = ‖ũ‖2 = ũ · ũ = (u · u)2 = n2, and
d(u,v) = ‖ũ− ṽ‖2 = ‖ũ‖2 + ‖ṽ‖2 − 2(ũ · ṽ) = 2n2 − 2(u · v)2. In particular, if
uv ∈ E we have d(u,v) = 2n2 − 2(n− 2)2 = 8(n− 1). We next notice that∑
u,v∈Qn

d(u,v) = 22n×2n2−2
∑
u,v

(u·v)2 = 22n×2n2−2
∑
u,v

(
∑

i

uivi)2 = 22n(2n2−2n),

as
∑

u,v uiviujvj is 22n when i = j, and 0 otherwise.
Let f be a nonexpanding embedding of X into `1. Notice that

d(u,−u) = 2n2 − 2(u · v)2 = 0,

and so any embedding with finite distortion must satisfy f(u) = f(−u). There-
fore Inequality (3) can be used and we get that

α
∑

uv∈E ‖f(ũ)− f(ṽ)‖1 + 1
2

∑
u∈Qn

‖f(ũ)− f(0)‖1
1
2n

∑
u,v∈Qn

‖f(ũ)− f(ṽ)‖1
≥ 8

7
(4α + 1/2). (15)

On the other hand,

α
∑

uv∈E d(u,v) + 1
2

∑
u∈Qn

d(u,0)
1
2n

∑
u,v∈Qn

d(u,v)
8α(n2 − n) + n2

2n2 − 2n
= 4α + 1/2 + o(1). (16)

The discrepancy between (15) and (16) shows that for every ε > 0 and for
sufficiently large n, the required distortion of V into `1 is at least 8/7− ε. ut



6 Discussion

It is important to understand our results in the context of the Lift and Project
system defined by Lovász and Schrijver [19], specifically the one that uses positive
semidefinite constraints, called LS+ (see [20] for relevant discussion). As was
mentioned in the introduction, a new result of Georgiou, Magen, Pitassi and
Tourlakis [14] shows that after a super-constant number of rounds of LS+, the
integrality gap is still 2 − o(1). To relate LS+ to SDPs one needs to use the
conversion yi = 2zi − z0, where yi is as usual the vectors of the SDP solution
and the zi are the Cholesky decomposition of the matrix of the lifted variables
in the LS+ system. With this relation in mind, it can be shown that the triangle
inequalities with respect to v0 are implied after as little as one round of LS+

and so [14] extends Charikar’s result on the SDP with these types of triangle
inequalities. However, at least for some graphs, triangle inequalities not involving
v0 as well as pentagonal inequalities are not implied by any number of rounds of
LS+. To see this, consider the application of LS+ system to Vertex Cover when
the instance is the empty graph. Since for this instance the Linear Program
relaxation is tight, lifted inequalities must appear in the first round or not at
all. But it is easy to see that even the general triangle inequalities do not appear
after one round and thus will never appear. It is important to note that for the
graphs used in [14] (which are the same as the ones we use here) we do not know
whether the general triangle inequality and whether pentagonal inequalities are
implied after a few rounds of LS+.

Acknowledgment: Special thanks to George Karakostas for very valuable
discussions. We also thank the referees for their detailed and insightful com-
ments.
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10. Chawla, C., Gupta, A., Räcke, H.: Embeddings of negative-type metrics and an
improved approximation to generalized sparsest cut. In: SODA ’05: Proceedings
of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, Vancouer,
BC, Canada (2005) 102–111

11. Arora, S., Lee, J., Naor, A.: Euclidean distortion and the sparsest cut [extended
abstract]. In: STOC’05: Proceedings of the 37th Annual ACM Symposium on
Theory of Computing, New York, ACM (2005) 553–562

12. Khot, S., Vishnoi, N.: The unique games conjecture, integrality gap for cut prob-
lems and embeddability of negative type metrics into `1. In: Proceedings of The
46-th Annual Symposium on Foundations of Computer Science. (2005)

13. Devanur, N., Khot, S., Saket, R., Vishnoi, N.: Integrality gaps for sparsest cut
and minimum linear arrangement problems. In: Proceedings of the thirty-eighth
annual ACM symposium on Theory of computing. (2006)

14. Georgiou, K., Magen, A., Pitassi, T., Tourlakis, I.: Integrality gaps of 2 − o(1)
for vertex cover sdps in the lovász-schrijver hierarchy. In: ECCCTR: Electronic
Colloquium on Computational Complexity, technical reports, TR06-152. (2006)

15. Agarwal, A., Charikar, M., Makarychev, K., Makarychev, Y.: O(
√

log n) approxi-
mation algorithms for min UnCut, min 2CNF deletion, and directed cut problems.
In: STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on The-
ory of computing, New York, NY, USA, ACM Press (2005) 573–581

16. Deza, M., Laurent, M.: Geometry of cuts and metrics. Springer-Verlag, Berlin
(1997)

17. Krauthgamer, R., Rabani, Y.: Improved lower bounds for embeddings into l1. In:
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms. (2006)
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