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Abstract

We consider the standard semidefinite programming (SDP) relaxation for the vertex cover
problem to which all hypermetric inequalities supported on at most k vertices are added and
show that the integrality gap for such SDPs remains 2− o(1) even for k = O(

√
log n/ log log n).

This extends results by Kleinberg-Goemans, Charikar and Hatami et al. who considered vertex
cover SDPs tightened using the triangle and pentagonal inequalities, respectively.

Our result is complementary to a recent result by Georgiou et al. proving integrality gaps
for vertex cover SDPs in the Lovász-Schrijver hierarchy. However, the SDPs we consider
are incomparable to the SDPs analyzed by Georgiou et al. In particular we show that vertex
cover SDPs in the Lovász-Schrijver hierarchy fail to satisfy any hypermetric constraints sup-
ported on an independent set of the input graph. This constrasts with the LP Lovász-Schrijver
hierarchy where all local LP constraints are derived.

∗Funded in part by NSERC
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1 Introduction

A vertex cover for a graph is any subset of vertices that touches all edges in the graph. The
approximability of the minimum vertex cover problem on graphs remains one of the outstanding
problems in theoretical computer science. While there exists a trivial 2-approximation algorithm,
considerable efforts have failed to obtain an approximation ratio better than 2 − o(1). Moreover,
the strongest PCP-based hardness result known [?] only shows that 1.36-approximation of vertex
cover is NP-hard. Assuming Khot’s Unique Game Conjecture [?], Khot and Regev [?] show that
2− o(1)-approximation is NP-hard.

Several recent papers [?, ?, ?, ?, ?, ?] examine whether semidefinite programming (SDP) re-
laxations of vertex cover might yield better approximations. Goemans and Williamson [?]
introduced semidefinite programming relaxations as an algorithmic technique to obtain a 0.878
approximation for max-cut. Since then semidefinite programming has arguably become our most
powerful tool for designing approximation algorithms. Indeed, for many NP-hard optimization
problems, the best approximation ratios are achieved using SDP-based algorithms.

For a graph G = (V,E), the standard SDP relaxation for vertex cover is

min
∑

i∈V (1 + v0 · vi)/2
s.t. (v0 − vi) · (v0 − vj) = 0 ∀ij ∈ E

‖vi‖ = 1 ∀i ∈ {0} ∪ V
(1)

Halperin [?] employed this relaxation (and an appropriate rounding technique) to obtain a (2 −
Ω(log log ∆/ log ∆))-approximation for vertex cover on graphs with maximal degree ∆. On the
other hand, Kleinberg and Goemans [?] showed that in general this relaxation has an integrality
gap of 2− o(1).

One possible avenue for decreasing this integrality gap comes from the following simple obser-
vation: for any integral (or rather, one-dimensional) solution, ‖vi−vj‖2 is an `1 metric. Therefore
the addition of inequalities on the distances ‖vi − vj‖2 that are valid for `1 metrics may yield a
possible tightening of the SDP (note that the constraint (v0 − vi) · (v0 − vj) = 0 in SDP (1) is in
fact the following distance constraint “in disguise”: ‖vi − v0‖2 + ‖vj − v0‖2 = ‖vi − vj‖2).

For example, since `1 metrics satisfy the triangle inequality, we could add the following con-
straint to SDP (1):

‖vi − vj‖2 + ‖vj − vk‖2 ≥ ‖vi − vk‖2 ∀i, j, k ∈ {0} ∪ V. (2)

This `2
2 triangle inequality is the crucial addition yielding the breakthrough Arora-Rao-Vazirani

sparsest cut algorithm [?]. This suggests that the addition of such inequalities to the standard
vertex cover SDP might give a 2− Ω(1) approximation.

Indeed, Hatami et al. [?] prove that if SDP (1) is strengthened by requiring that the distances
‖vi − vj‖2 satisfy all `1 inequalities (i.e., the vectors vi equipped with the `2

2 norm ‖ · ‖2 are `1-
embeddable), then the resulting relaxation has no integrality gap. Of course, the caveat here is that
the resulting relaxation has exponentially many constraints and is hence intractable. To obtain a
tractable relaxation (or at least one computable in subexponential time), our relaxation must use
only a limited subset of `1 inequalities.

One canonical subclass of `1 inequalities is the discrete and easily-described class of hypermetric
inequalities (see the Preliminaries for definitions). These include the triangle inequalities, as well
as the so-called pentagonal, heptagonal, etc., inequalities. For example, the usefulness of these
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inequalities is witnessed in a work by Avis and Umemoto [?]. They show that for dense graphs
linear programming relaxations of max cut based on the k-gonal inequalities have integrality gap
at most 1 + 1/k. This, in a sense, gives rise to an LP-based PTAS.

Charikar [?] showed that even with the addition of the triangle inequality (2) the integrality
gap of SDP (1) remains 2 − o(1). Nevertheless, Karakostas [?] showed that adding the triangle
inequality (as well as the “antipodal” triangle inequalities (±vi − ±vj) · (±vi − ±vk) ≥ 0) yields
a (2−Ω(1/

√
log n))-approximation for vertex cover, currently the best ratio achievable by any

algorithm. Hatami et al. [?] subsequently showed that Karakostas’s SDP even with the addition of
the pentagonal inequalities has integrality gap 2− o(

√
log log n/ log n).

In this work we rule out the possibility that adding local hypermetric constraints improves the
integrality gap of vertex cover SDPs:

Theorem 1 The tightening of the standard SDP for vertex cover with all hypermetrics that are
supported on O(

√
log n/ log log n) points has integrality gap 2− o(1).

As mentioned above, Hatami et al. [?] show that adding the constraint that solutions to SDP (1)
be `1-embeddable results in an SDP with no integrality gap. Theorem 1 then immediately gives
the following corollary about `2

2 metrics:

Corollary 1 There exist `2
2 metrics that are not `1-embeddable yet satisfy all hypermetric inequal-

ities supported on O(
√

log n/ log log n) points.

It is interesting to compare Corollary 1 with recent results about local-global phenomena in
metric spaces. In [?, ?] the authors describe metric spaces that cannot be well-embedded into `1

but locally every small subset embeds into `1 isometrically. In contrast, our corollary shows the
existence of a metric that locally resembles `1 (although not provably `1) but globally does not
embed isometrically into `1. From that standpoint, this is far weaker than [?, ?]. However, the
metric we supply is also an `2

2 metric. Finding `2
2 metrics that are far from being `1 proved to be

a very challenging task (see Khot and Vishnoi’s work [?] motivated by integrality gap instances
for sparsest cut). To the best of our knowledge, there are no known results that point to such
metrics which further satisfy any local conditions beyond the obvious triangle inequality.

A result related to Theorem 1 was proved by Georgiou et al. in [?]. The main result of that paper
showed that SDP relaxations obtained by tightening the standard linear programming relaxation for
vertex cover using O(

√
log n/ log log n) rounds of the LS+ “lift-and-project” method of Lovász

and Schrijver [?] have integrality gap 2− o(1). The SDPs considered in [?] seem intimately related
to those obtained by adding local `1 or hypermetric constraints. However, the vertex cover SDP
relaxation obtained after k rounds of the LS+ method is incomparable to the relaxation obtained
by adding all order k hypermetric inequalities to SDP (1) In section 4 we show in a strong sense
the incomparability of these relaxations: Fix any subset S of vertices that is an independent. We
then find a hypermetric inequality supported on all points of S that is nevertheless not valid for
any vertex cover SDPs in the Lovász Schrijver hierarchy. In particular, before the current work
it was conceivable that adding such concrete constraints as, say, all hypermetric inequalities on
7-points (e.g., the “heptagonal” inequalities) may result in a non-trivial SDP relaxation. This was
true even in light of the integrality gaps proved in [?].

We briefly describe now how we prove Theorem 1. We use the same graph family as in [?, ?, ?, ?].
The SDP solution can be though of as an `1 metric to which a small perturbation was applied.
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This perturbation is characterized by two “infinitesimal” parameters, γ and ε relating to the graph
and the integrality gap, respectively. We show that hypermetric inequalities that are supported on
k ≥ 4 points, one of which is v0, must have a slack component that depends on k and on ε and γ,
that will be maintained as long as kγ = O(ε). The case of the triangle inequality is covered by [?]
and [?], and the case where v0 does not participate in the inequality is handled by the fact that the
metric formed by the remaining vectors is an `1 metric. Setting ε to an arbitrary small constant,
and setting γ to Θ(

√
log log n/ log n) provides the bound in our theorem.

2 Preliminaries

Given two vectors x,y ∈ {−1, 1}n their Hamming distance dH(x,y) is |{i ∈ [n] : xi 6= yi}|. For
two vectors u ∈ Rn and v ∈ Rm denote by (u,v) ∈ Rn+m the vector whose projection on the first
n coordinates is u and on the last m coordinates is v.

The tensor product u ⊗ v of vectors u ∈ Rn and v ∈ Rm is the vector in Rnm indexed by
ordered pairs from n ×m and that assumes the value uivj at coordinate (i, j). Define u⊗d to be
the vector in Rnd

obtained by tensoring u with itself d times. Let P (x) = c1x
t1 + . . . + cqx

tq be
a polynomial with nonnegative coefficients. Then TP is the function that maps a vector u to the
vector TP (u) = (

√
c1u

⊗t1 , . . . ,
√

cqu
⊗tq).

Fact: For all vectors u,v ∈ Rd, TP (u) · TP (v) = P (u · v).

Metrics and `1 inequalities We quickly review the facts we need about `1 inequalities. The
book [?] of Deza and Laurent is a good source for more information.

A finite metric space is called an `1 metric if it can be embedded in `1-normed space so that
all distances remain unchanged. It is easy to see that the set C of all `1 metrics on a fixed number
of points is a convex cone. Let X be a set of size n. A subset S of X is associated with a metric
δS(x, y) that is called a cut metric and is defined as |χS(x)−χS(y)|, where χS(·) is the characteristic
function of S. These metrics are the extreme rays of C; namely, every `1 metric is a positive linear
combination of cut metrics. This fact leads to a simple characterization of all inequalities that are
valid for `1 metrics as follows. Consider the polar cone of C,

C∗ = {B ∈ Rn×n|B ·D ≤ 0 for all D ∈ C},

where by B · D we denote the matrix inner product of B and D, that is B · D = trace(BDt) =∑
i,j BijDij . Notice that for B to be in C∗ it is enough to require that B · δS ≤ 0 for all cuts S. By

definition it is clear that any B ∈ C∗ defines a valid inequality such that
∑

i,j Bijdij ≤ 0 whenever
d is an `1 metric. Conversely, (strong) duality implies that if d satisfies all inequalities of this type
for every B ∈ C∗ then d is an `1 metric.

A special canonical class of `1 inequalities is the class of hypermetric inequalities. Let b ∈ Zk,
with

∑k
i=1 bi = 1. It can be easily verified that B = bbt is in C∗, and the inequality

∑
i,j bibjdij ≤ 0

is called a hypermetric. If we further require b ∈ {−1, 1}k, in which case the hypermetric is called
pure, we obtain the k-gonal inequalities, e.g., the triangle inequality for k = 3, pentagonal inequality
for k = 5, etc.

3 Construction and proof

Fix arbitrarily small constants γ, ε > 0 such that ε > 3γ, and let m be a sufficiently large integer.
The Frankl-Rödl graph Gγ

m is the graph with vertices {−1, 1}m and where two vertices i, j ∈
{−1, 1}m are adjacent if dH(i, j) = (1− γ)m. A classical result of Frankl and Rödl [?] implies that
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the size of a minimal vertex cover in Gγ
m is 2m(1− o(1)) whenever γ = Ω(

√
log m/m). We denote

the vertices V of G as vectors wi ∈ {−1, 1}m (the association of index i with a vector in the cube
is arbitrary) and normalize these to get unit vectors ui = 1√

m
wi.

Consider the polynomial

P (x) = βx(x + 1)
2m
γ + αx

1
γ + (1− α− 2β)x,

where the constants α, β > 0 will be defined below. Let z0 = (1, 0 . . . , 0), zi = (2ε,
√

1− 4ε2TP (ui)),
where TP (v) is the tensoring of v induced by the polynomial P . We fix the values of α and β defining
P (and hence, defining the vectors zi) according to the following lemma implicit in [?]:

Lemma 1 ([?]) Suppose 2m
γ and 1

γ are even and that m is significantly larger than 1/γ. Suppose
further that ε > 3γ. Then there exist constants α, β > 0 satisfying

α < 7.5γ,

2β + α >
4ε

1 + 2ε
− 4γ,

such that the vectors z0, z1, . . . , zn satisfy both the standard vertex cover SDP (1) and the
triangle inequality (2).

Note that a translated version of the vector set {z0, z1, . . . , zn} lay at root of the LS+ lower
bounds proved in [?]. Specifically, the Gram matrix of the vectors vi = z0+zi

2 was shown to be a
solution for the vertex cover SDP resulting from O(

√
log n/ log log n) rounds of LS+ lift-and-

project.
The remainder of this section is devoted to proving the following theorem.

Theorem 2 The vectors z0, z1, . . . , zn satisfy all hypermetric inequalities on r points, r ≤ 2
45

ε
γ .

We claim that Theorem 1 follows immediately from Theorem 2. Indeed, note first that the value
of SDP (1) on the vectors z0, z1, . . . , zn is (1 + ε)2m−1. On the other hand, recall that the under-
lying graph Gγ

m has minimal vertex cover size (1 − o(1))2m whenever γ = Ω(
√

log m/m). Hence,
Theorem 1 follows by taking ε > 0 to be any arbitrarily small constant and γ = Ω(

√
log m/m).

As an aside, we note that our vectors {zi} also satisfy the “antipodal” triangle inequalities
(±zi−±zj) · (±zi−±zk) ≥ 0 for all i, j, k ∈ {0}∪V . Recall that these inequalities define the SDP
at root of Karakostas’s [?] vertex cover algorithm. That our vectors satisfy these inequalities can
be seen as follows. Consider the subset {zi}i≥1. For each coordinate, the vectors in this subset take
on at most 2 different values, and hence this subset is `1-embeddable. Moreover, this remains true
even if we replace some (or all) of the zi by −zi. Hence, it suffices to consider only the “antipodal”
triangle inequalities involving z0. The validity of these inequalities then follows easily from the fact
that the zi satisfy the standard triangle inequalities (by Lemma 1) and the fact that the value of
zi · z0 does not depend on i.

Before giving the proof of Theorem 2 we give some intuition. Note that the vector set {zi} is the
result of a perturbation applied to the following simple-minded `1 metric: Let D = {v0,v1, . . . ,vn}
be the metric obtained by taking vi to be the (normalized version of) the vectors of the m-
dimensional cube, and let v0 be a unit vector perpendicular to all vi. Notice that these vectors are
precisely the vectors we would have obtained if we had used the polynomial P (x) = x to define the
tensored vectors zi (corresponding to taking ε = γ = 0). The metric D is easily seen to be an `1
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metric: take the Hamming cube and place the zeroth point at the origin to get an `1 embedding
that is an isometry. Since D is `1, every hypermetric inequality is valid for it. On the other hand,
D does not satisfy even the basic conditions of SDP (1) (e.g., the edge constraints) with respect
to our graph of interest, i.e., Gγ

m with γ > 0, and the basic attempts to remedy that will already
violate the triangle inequality. By focusing on the pure hypermetrics, we can give some intuition
of why our construction works, and why the critical value of k is O(ε/γ) (for the remaining hyper-
metrics, this intuition is less accurate). Given any choice of α, β > 0 we get distances that are a
perturbation of D by D∆. As was mentioned in the proof outline in the introduction and in light
of Lemma 1, we may concentrate on inequalities supported on more than three points. Since any
given hypermetric inequality is satisfied by D, it is sufficient to prove that it is satisfied for the
perturbated component of the metric, i.e., Dδ. Analyzing the inequality on D∆ then shows that∑

i,j bibjdij ≤ −2ε + Cγk, where C is a universal constant, and the dij are the distances defined by
D∆. Consequently, as long as k = O(ε/γ), the inequality holds for D∆. Hence it holds for D +D∆,
the metric resulting from the zi as well.

Proof: [of Theorem 2] By Lemma 1 we already know that the vectors satisfy all hypermetric
inequalities on 3 points, namely, the triangle inequalities.

So we only need to show that the solution satisfies hypermetric inequalities on 4 or more points.
This is an important point since the arguments we will use to handle hypermetric inequalities on
at least 4 points fail for the triangle inequalities.

Consider the set of vectors {zi}, i ≥ 1. As mentioned above, for each coordinate, the vectors in
this subset take on at most 2 different values, and hence this subset is `1-embeddable. Therefore,
any `1 inequality (and in particular any hypermetric inequality) not involving z0 must be satisfied.

Now let B = bbt ∈ C∗, where b ∈ Zk+1 and
∑k

i=0 bi = 1, be any hypermetric inequality
supported on r = k + 1 points. By the above discussion, it suffices to consider the case where z0

is one of the points, and we can assume that the points are 0, 1, . . . , k. Our goal is to show that∑
i<j≤k Bij‖zi − zj‖2 ≤ 0. By definition, for i, j ≥ 1,

‖zi − zj‖2 = 2− 2(4ε2 + (1− 4ε2)P (ui · uj)) = 2(1− 4ε2)(1− P (ui · uj)),

and ‖zi − z0‖2 = 2− 4ε. Hence,∑
0≤i<j≤k

Bij‖zi − zj‖2 = 2(1− 2ε)
k∑

i=1

B0i + 2(1− 4ε2)
∑

0<i<j≤k

Bij(1− P (ui · uj)).

Therefore, we need to show
k∑

i=1

B0i + (1 + 2ε)
∑

0<i<j≤k

Bij(1− P (ui · uj)) ≤ 0 (3)

We require the following technical lemma. First some definitions. By homogeneity we may
assume b0 < 0 (and hence that b0 ≤ −1 since b0 ∈ Z). Let

S = {i ∈ [k] : bi > 0},
T = {i ∈ [k] : bi < 0}.

Next denote Hij = (ui · uj + 1)(ui · uj)
2m
γ and Mij = (ui · uj)

1
γ , and let ∆ij be the Hamming

distance between ui and uj . With these definitions we can then write P (ui · uj) = βHij + αMij +
(1− α− 2β)(1− 2

m∆ij).
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Lemma 2 Assume that γ, ε and m satisfy the conditions in Lemma 1. Then,

1.
∑

0<i<j≤k Bij = 1
2((1− b0)2 −

∑k
i=1 b2

i )

2.
∑

0<i<j≤k Bij(−βHij − αMij) ≤ 15γ
∑

i∈S,j∈T bi(−bj)

3.
∑

0<i<j≤k Bij∆ij ≤ 1
4m(1− b0)2

Proof: The first equality is an immediate consequence of the fact that
∑k

i=1 bi = 1− b0 and that
(
∑k

i=1 bi)2 =
∑k

i=1 b2
i + 2

∑
0<i<j≤k bibj .

For the second inequality, note first that ui · uj ≤ 1 − 1/m. Hence, Hij is negligible for all
i 6= j. Moreover, since the ui are unit vectors and 1/γ is even, it follows that 0 ≤ Mij ≤ 1. Hence,
by the bounds for α and β given by Lemma 1 it follows that βHij + αMij ≤ 15γ and the second
inequality follows.

For the last inequality notice that since ∆ij is the sum of m cut metrics (defined by the m
coordinates), it is enough to show that for every subset I ⊂ {0, 1, . . . , k},∑

0<i<j≤k

BijδI(i, j) ≤
1
4
(1− b0)2.

Indeed, using the fact that B is a hypermetric we have,

∑
0<i<j≤k

BijδI(i, j) =
∑

i∈I,j /∈I

bibj =

(∑
i∈I

bi

)
·

(
1− b0 −

∑
i∈I

bi

)
≤
(

1− b0

2

)2

.

�

We can now bound the left-hand-side of (3). To begin with, we have,

k∑
i=1

B0i + (1 + 2ε)
∑

0<i<j≤k

Bij(1− P (ui · uj))

=
k∑

i=1

B0i + (1 + 2ε)
∑

0<i<j≤k

Bij(1− βHij − αMij − (1− α− 2β)(1− 2
m

∆ij))

=
k∑

i=1

B0i + (1 + 2ε)
∑

0<i<j≤k

Bij(−βHij − αMij + α + 2β + (1− α− 2β)
2
m

∆ij).

Applying the inequalities from Lemma 2 it then follows that the above is upper-bounded by
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b0(1− b0) + (1 + 2ε)

15γ
∑

i∈S,j∈T

bi(−bj) +
1
2
(α + 2β)

[
(1− b0)2 −

k∑
i=1

b2
i

]
+

1
2
(1− α− 2β)(1− b0)2


=

1
2
(1− b2

0) + 2ε
1
2
(1− b0)2 + (1 + 2ε)

15γ
∑

i∈S,j∈T

bi(−bj)−
1
2
(α + 2β)

k∑
i=1

b2
i


<

1
2
(1− b2

0) + 2ε
1
2
(1− b0)2 + (1 + 2ε)

15γ
∑

i∈S,j∈T

bi(−bj)−
[

2ε

1 + 2ε
− 2γ

] k∑
i=1

b2
i


=

1
2
(1− b2

0) + 2ε
1
2
(1− b0)2 − 2ε

k∑
i=1

b2
i + (1 + 2ε)

15γ
∑

i∈S,j∈T

bi(−bj) + 2γ

k∑
i=1

b2
i


<

1
2
(1− b2

0)− ε(2
k∑

i=1

b2
i − (1− b0)2) + 15γ(1 + 2ε)

 ∑
i∈S,j∈T

bi(−bj) +
k∑

i=1

b2
i


<

1
2
(1− b2

0)− ε(2
k∑

i=1

b2
i − (1− b0)2) + 30γ

 ∑
i∈S,j∈T

bi(−bj) +
k∑

i=1

b2
i

 .

Note that since the hypermetric inequality we are considering is not a triangle inequality, it
follows that we must have

∑
i>0 b2

i ≥ 3. But then, the following technical lemma can be used to
show that the above is bounded by 0, and hence complete the proof of the theorem.

Lemma 3 Let k ≤ 2
45

ε
γ − 1 and let 0 < ε < 1

6 and γ > 0. Assume b0 ≤ −1,
∑

b2
i ≥ 3 and that

bi 6= 0 for all i. Then

1
2
(1− b2

0)− 2ε

(
k∑

i=1

b2
i −

1
2
(1− b0)2

)
+ 30γ

 ∑
i∈S,j∈T

bi(−bj) +
k∑

i=1

b2
i

 < 0.

Proof: It is not hard to to check that since ε < 1
6 and b0 is a (strictly) negative integer, we have

1
2
(1− b2

0)− 2ε

(
k∑

i=1

b2
i −

1
2
(1− b0)2

)
≤ −2ε

(
k∑

i=1

b2
i − 2

)
≤ −2ε

3

k∑
i=1

b2
i .

It is important to note that it was critical to have
∑

i>0 b2
i ≥ 3 here, as only then can we claim

that
∑k

i=1 b2
i − 2 is a positive constant. Indeed, the triangle inequality (b0 = −1, b1 = b2 = 1)

(i.e., the only hypermetric inequality for which this doesn’t hold), we cannot expect any method
bounding the slack of the inequality to do any good: the vertex cover edge constraints force the
triangle inequality to be tight for edges!

It now suffices to prove that

−2ε

3

k∑
i=1

b2
i + 30γ

 ∑
i∈S,j∈T

bi(−bj) +
k∑

i=1

b2
i

 < 0 (4)

7



Let s, t be the cardinalities of S, T , respectively, and let x =
∑

i∈S bi and y =
∑

i∈T (−bi). Now,
using the Cauchy-Schwartz inequality and the fact that s, t ≤ k, we get∑

i∈S,j∈T bi(−bj) +
∑k

i=1 b2
i∑k

i=1 b2
i

≤ 1 +
xy

s(x/s)2 + t(y/t)2
≤ 1 + k

xy

x2 + y2
≤ 1 + k/2.

(Note that if y = t = 0 the bound is trivial and we therefore ignored this case above.) Hence,

−2ε

3

k∑
i=1

b2
i + 30γ

 ∑
i∈S,j∈T

bi(−bj) +
k∑

i=1

b2
i

 <

(
−2ε

3
+ 30γ(1 + k/2)

) k∑
i=1

b2
i ,

and so (4) holds as long as k ≤ 2
45

ε
γ − 1. �

Theorem 2 now follows. �

4 Hypermetric inequalities vs. Lovász-Schrijver SDP lift-and-project

In this section we show that hypermetric inequalities need not be derived by Lovász and Schrijver’s
LS+ lift-and-project system. Our plan of attack is as follows. After giving all appropriate definitions
we will first show that no pure hypermetric inequalities are derived by LS+ for the convex cone
defined by the inequalities 0 ≤ xi ≤ x0, i = 1, . . . , n. We will then use this result to show the
following for vertex cover: Fix a graph G and an independent set S in G, and consider a
vertex cover SDP for G derived using LS+ lift-and-project. Then the constraints defining this
SDP do not imply any of the pure hypermetric constraint supported on S.

We begin by defining the Lovász-Schrijver LS+ lift-and-project system [?]. In what follows all
vectors will be indexed starting at 0. Recall that a set C ⊂ Rn is a convex cone if for every y, z ∈ C,
and for every α, β ≥ 0, αy + βz ∈ C. Given a convex cone C ⊂ Rn+1 we denote its projection onto
the hyperplane x0 = 1 by C|x0=1. Let ei denote the vector with 1 in coordinate i and 0 everywhere
else. Let Qn ⊂ Rn+1 be the convex cone defined by the constraints 0 ≤ xi ≤ x0 and fix a convex
cone C ⊂ Qn. The lifted cone M+(C) ⊆ R(n+1)×(n+1) consists of all positive semidefinite matrices
(n + 1)× (n + 1) matrices Y such that,

Property I. For all i = 0, 1, . . . , n, Y0i = Yii.
Property II. For all i = 0, 1, . . . , n, Y ei, Y e0 − Y ei ∈ C.

The cone M+(C) is the LS+ positive semidefinite tightening for C. This procedure can be it-
erated by projecting M+(C) back to Rn+1 and then re-applying the M+ operator to the pro-
jection. In particular, let N+(C) = {Y e0 : Y ∈ M+(C)} ⊆ Rn+1. Define Nk

+(C) inductively by
setting N0

+(C) = C and Nk
+(C) = N+(Nk−1

+ (C)), and define Mk
+(C) to be M+(Nk−1

+ (C)). Lovász
and Schrijver show that Nk+1

+ (C) ⊆ Nk
+(C) and Mk+1

+ (C) ⊆ Mk
+(C) and that moreover these

containment are proper if and only if Nk
+(C)|x0=1 is not the integral hull of C|x0=1. Moreover,

they show that Nn
+(C)|x0=1 is equal to the integral hull of C|x0=1. It is useful to note, that

Y ∈ Mk
+(C) ⊆ R(n+1)×(n+1) if and only if Y is PSD, satisfies Property I, and the following:

Property II′. For all i = 0, 1, . . . , n, Y ei, Y e0 − Y ei ∈ Nk
+(C).

With these definitions in hand, we can now begin by showing that M+(Qn) does not satisfy any
pure hypermetric constraint (recall that Qn is the cone satisfying 0 ≤ xi ≤ x0 for all i = 1, . . . , n).
As a warm up we examine the triangle inequality of SDP (1) for a three vertex graph with no edges.
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Note that this SDP has no edge constraints. Moreover, any vector solution vi can be mapped using
the affine transformation vi → (vi + v0)/2 to a set of vectors whose Gram matrix is in M+(Q3),
and vice versa. Now consider three vectors v1,v2,v3 that correspond to the three vertices of the
graph. Geometrically it is possible to place these vectors such that the Gram matrix of v0,v1,v2,v3

satisfies Properties I and II above for an LS+ tightening, yet v1,v2,v3 violate triangle inequality.
We can accomplish this by making v1 and v2 almost coincide and placing v3 between them.

In the the LS+ world, the above intuition leads to the following matrix in M+(Q3):

Y =


1 ε ε ε
ε ε 0 β · ε
ε 0 ε β · ε
ε β · ε β · ε ε


By having ε ∈ (0, 1/2) and β ∈ [0, 1] we ensure Y satisfies Properties I and II. One can show that
by setting ε arbitrarily close to 0 and β close to but bigger than 1/2, we ensure that Y is PSD,
while ensuring that its Cholesky decomposition violates the triangle inequality.

This construction can be extended to show that M+(Qn) does not satisfy any inequality∑
bibjdij ≤ 0 where b is a vector of length n = 2k + 1,

∑
bi = 1, and for all i, |bi| = 1. In-

deed, consider an inequality on 2k +1 points defined by the the vector (0, b1, b2, . . . , b2k+1) ∈ Z2k+2
+

(note that b0 = 0) where bi = 1 for i = 1, . . . , k + 1 and bi = −1 for i = k + 2, . . . , 2k + 2. In
this way we naturally split the points into two clusters of size k + 1 and k points. The associated
inequality requires that the sum of distances across the clusters dominates the sum of distances
within the clusters. Define the distance within the clusters as 2ε, and the distance across the clus-
ters as 2ε(1−β). We have k(k +1) cross pairs and

(
k
2

)
+
(
k+1
2

)
= k2 inner pairs. Therefore in order

to violate the inequality, we should have 2ε(1− β)k(k + 1) < 2εk2. In other words it suffices for β
to be even slightly bigger than 1

k+1 (this will be crucial later).
Define the matrix

Y (s,t) =

 1 ε · J1,s ε · J1,t

ε · Js,1 ε · Is ε · β · Js,t

ε · Jt,1 ε · β · Jt,s ε · It

 ,

where Jm,n is the m×n all-1 matrix. The configuration we described above can be realized by the
matrix Y (k+1,k) of order (2k + 2). Similarly as in the case of the triangle inequality, Y (s,t) satisfies
Properties I and II as long as ε ∈ (0, 1/2) and b ∈ [0, 1].

Hence, Y (k+1,k) is in M+(Qn) provided we can show that it is PSD. This is implied by the
following technical lemma.

Lemma 4 For all s, t, such that s + t = 2k + 1 there exist ε ∈ (0, 1/2) and β > 1
k+1 such that the

matrix Y (s,t) ∈ R(2k+2)×(2k+2) is PSD.

Proof: Let 0n,m be the n×m zero matrix and define the matrix

U (s,t) =
(

0s,s Js,t

Jt,s 0t,t

)
.

We decompose Y (s,t) as

Y (s,t) =
(

1 ε · J1,s+t

ε · Js+t,1 0s,t

)
+ ε ·

(
0 01,s+t

0s+t,1 Is+t,s+t + βU (s,t)

)
.

9



We prove that the resulting matrices are PSD. First, it is not difficult to see that the only non-

zero eigenvalues of the first matrix are 1±
√

1+4(s+t)ε2

2 which are strictly positive for ε arbitrarily
close to 0.

It is also easy to see that the only non zero eigenvalues of U (s,t) are ±
√

s · t. Therefore the
eigenvalues of the matrix Is+t,s+t + βU (s,t) are 1 ± β

√
st, and the rest are 1. These eigenvalues

remain positive as long as β
√

st < 1. Recall here that we required β > 1
k+1 and so we can take β

arbitrarily close to that bound. But then

β
√

st ≤ 1
k + 1

2k + 1
2

=
2k + 1
2k + 2

< 1

completing the proof. �

We are ready now to show that vertex cover SDPs in the LS+ hierarchy violate pure hy-
permetrics on any independent set. Fix an n-vertex graph G = (V,E) and consider the convex
cone C ⊂ Qn consisting of all vectors x ∈ Rn+1 such that xi + xj ≥ x0. Then LS+ lifting yields
the following sequence of SDPs for G: M+(C),M2

+(C), . . .. We will show that for all k, every
independent set S in G, and all pure hypermetrics B supported on S, there exists Y ∈ Mk

+(C) such
that Y does not satisfy B.

To that end, fix k and S, and let s = |S| be odd. Without loss of generality, assume that
S = {1, 2, . . . , s}. Fix a pure hypermetric B defined on the set S. By the discussion above we
know that there exists Y ′ ∈ M+(Qs) that violates the pure hypermetric B. Let v0,v1, . . . ,vs

be the Cholesky decomposition for Y ′. Now let Y ∈ R(n+1)×(n+1) be the matrix with Cholesky
decomposition v0,v1, . . . ,vs,v′s+1, . . . ,v

′
n where v′j = v0 for all j ≥ s + 1. By construction Y is

PSD, satisfies Property I, and does not satisfy B on S. So it suffices to verify Property II′ in order
to show that Y ∈ Mk

+(C). Note that Y ei is the all-1 vector for all i ≥ s + 1 and hence Property
II′ holds for all i ≥ s + 1 since the all-1 vector is in the integral hull and hence in Nk

+(C) for all k.
Now consider a vector Y ei where 1 ≤ i ≤ s. Note that Y00 = Y0j for all j ≥ s + 1. But then, since
S is independent, it follows that the projection of Y ei onto the hyperplane x0 = 1 is also in the
integral hull and hence in Nk

+(C). Similarly, it follows that Y (e0 − ei) is also in Nk
+(C) whenever

1 ≤ i ≤ s. So Property II’ holds for all i, and Y ∈ Mk
+(C).

We end this section by remarking that the above arguments can be combined with those from [?]
to show that there is a graph G for which O(

√
log n/ log log n) rounds of LS+ produce an SDP

which (a) does not satisfy the triangle inequality and (b) has integrality gap 2−o(1). The argument,
which we do not have room to go into here, considers the Frankl-Rödl graph Gγ

m to which we append
three isolated vertices. The idea is to not satisfy the triangle inequality on the isolated vertices
while the remaining vertices will essentially employ the SDP solutions from [?].
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