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User-to-user evaluations

Evaluations are ubiquitous on the web:

— People-items: most previous work

« Collaborative Filtering
« Recommendation Systems

e E.g. Amazon

— People-people: our setting




Where does this occur on a large scale?

« WIKIPEDIA : adminship elections
— Support/Oppose (120k votes in English)

— Four languages: English, German, French, Spanish

o |=lstackoverflow
— Upvote/Downvote (7.5M votes)

o« Epinions&z@ .

— Ratings of others’ product reviews (1-5 stars)
— 5 = positive, 1-4 = negative



Goal

Understand what drives human evaluations

Evaluator Target



Overview of rest of the talk

1. What affects evaluations?

— We will find that status and similarity are two
fundamental forces

2. This will allow us to solve an interesting puzzle

— Why are people so harsh on those who have around the
same status as them?

3. Application: Ballot-Blind Prediction

— We can accurately predict election outcomes without
looking at the votes



Roadmap

1. What affects evaluations?
— Status
— Similarity
— Status + Similarity

2. Solution to puzzle

3. Application: Ballot-blind prediction



Definitions

Status

— Level of recognition, merit, achievement in the
community

— Way to quantify: activity level
o Wikipedia: # edits
o Stack Overflow: # answers

User-user Similarity

— Overlapping topical interests of A and B
« Wikipedia: cosine of articles edited
« Stack Overflow: cosine of users evaluated



How does status affect the vote?

Natural hypothesis: Pr[ + |~ f(SB)

“Only attributes (e.g. status) of B
matter”



How does status affect the vote?
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“Is B better than me?” is as
important as “Is B good?”



Relative Status vs. P(+)

« Evaluator A evaluates target B

e P(+)asafunctionof A =5, — §5?

« Intuitive hypothesis: monotonically decreases

P(positive eval)
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How does similarity affect the vote?

Two natural (and opposite) hypotheses:

1. Psimilarity = { P(+)

“The more similar you are, the better you can understand
someone’s weaknesses”

2. similarity = 1 P(+)

“The more similar you are, the more you like the person”

Which one is it?



Similarity vs. P(+)
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How do similarity and status interact?
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Similarity controls the extent to which status is taken into consideration



Who shows up to vote?

We find a selection effect in who gives the evaluations
(on Wikipedia):
If S, > S then A and B are highly similar

Similarity
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What do we know so far?

. Evaluations are diadic: Pr[ + ]~ (S, — Sp)

. P similarity = 1 P(+)

. Similarity controls how much status matters

. In Wikipedia, high-status evaluators are similar to their targets



Roadmap

1. How user similarity affects evaluations
2. Solution to puzzle

3. Application: Ballot-blind prediction



P(positive eval)
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Fraction of positive evaluations (P(+))

Solution: similarity
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Roadmap

1. How user similarity affects evaluations
2. Solution to puzzle

3. Application: Ballot-blind prediction



Application: ballot-blind prediction

Task: Predict the outcome of a Wikipedia adminship election
without looking at the votes

0000000000

Why is this hard? 0000000000

0000000000
0000000000

1. We can only look at the first 5 voters 0000

2. We aren’t allowed to look at their votes

General theme: Guessing an audience’s opinion from a
small fraction of the makeup of the audience



Features
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previous voting history)
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3. Simple summary statistics (SSS): Status difference (Delta)

target status, mean similarity,
mean A

* Note now we are predicting on a per-instance basis, so it
makes sense to use per-instance features



Our methods < |
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Global method (M1): 20} |
PrlE = 1] = P+ d(A;,sim) o b e e
Personal method (M2): |

PriE = 1] = ax P(A;,sim;) + (1 —a) % d(A,, sim;)

« E,: ith evaluation

« P voteri’s positivity: historical fraction of positive votes

. d(A,,sim;): global deviation from overall average vote fraction in
(A;, sim;) quadrant

. P,( A;, Sim,-): personal deviation

o: mixture parameter



Baselines and Gold Standard

« Baselines:
— B1: Logistic regression with Q + SSS

_ B2:Pr|E,=1| = P, +5SS

e Gold Standard (GS) cheats and looks at the votes



Results
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Implicit feedback purely from audience composition



Fraction of positive votes (P(+))
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Thanks!

Questions?



