Auditing Search Engines for Differential Satisfaction across Demographics

Rishabh Mehrotra, Ashton Anderson, Fernando Diaz, Amit Sharma, Hanna Wallach, Emine Yilmaz

University College London
Microsoft Research New York

Fairness across demographics

 Online services - advertised as being available to any user

Equal access to everyone

- Equal access helps attract a large and diverse population of users
- Service providers are scrutinized for seemingly unfair behavior [1,2,3]
- Onus on us
 - develop fair systems

^[2] S. Barocas and A. D. Selbst. Big data's disparate impact. California Law Review, 104, 2016.

Auditing services for fairness

We offer methods for auditing a system's performance for detection of differences in user satisfaction across demographics

From public libraries to search engines

- Modern analogue of public libraries
- Dominant role in information access
- Fairness in performance!

Are Search Engines Fair?

From public libraries to search engines

Search Engines:

- Rely on ML models to optimize for user satisfaction
- Make use of implicit signals
- Metric driven development

... not easy to audit

Tricky: straightforward optimization can lead to differential performance

Goal: estimate difference in user satisfaction between two demographic groups.

• Search engine uses a standard metric: **time spent** on clicked result page as an indicator of satisfaction.

 Suppose older users issue more of "retirement planning" queries

1. Aggregate Metrics can be misleading

Overall metrics can hide differential satisfaction

 Average user satisfaction for "retirement planning" may be high.

But,

- Average satisfaction for younger users=0.7
- Average satisfaction for older users=0.2

2. Query-level metrics can hide differential satisfaction

Younger users

```
<query-X>
```

<query-X>

<query-X>

<query-X>

<query-X>

<query-X>

retirement planning

<query-X>

<query-X>

Older users

retirement planning retirement planning <query-X>
retirement planning

Assuming same user satisfaction for "retirement planning" for both older and younger users = 0.7

What if average satisfaction for <query-X> = **0.9?** (e.g. <query-X> = "facebook")

Older users still receive more of lower-quality results than younger users.

3. More critically, even individuallevel metrics can also hide differential satisfaction

Metric itself could be confounded with demographics

Consider: Reading time for the same webpage result for the same user satisfaction

We must control for natural demographic variation to meaningfully audit for differential satisfaction.

Outline

- 1 Background
- 2 Data & metrics
- 3 Proposed approaches:
 - 1 Context Matching
 - 2 Hierarchical Multi-level model
- 4 From metrics to satisfaction
- 5 Discussion

Data: Demographic characteristics of search engine users

- Internal logs from Bing.com for two weeks
- 4 M users | 32 M impressions | 17 M sessions
- Demographics: Age & Gender
- Age:
 - post-Millenial: <18
 - Millenial: 18-34
 - Generation X: 35-54
 - Baby Boomer: 55-74

... also perform external auditing using comScore data

Metrics Considered

- 1. Graded Utility (GU)
 - based on search outcome and user effort
- 2. Reformulation Rate (RR)
 - fraction of queries that were reformulated
- 3. Successful Click Count (SCC)
 - clicks with significant dwell times
- 4. Page Click Counts (PCC)
 - total no of clicks on SERP

Goal: estimate difference in user satisfaction between demographic groups

Obvious solution: demographic binning!

Overall metrics across Demographics

- Substantial differences in performance across age
- Gender not so much

... how true are these?

Pitfalls with Overall Metrics

Conflates two separate effects:

- natural demographic variation caused by the differing traits among the different demographic groups e.g.
 - Different queries issued
 - Different information need for the same query
 - Even for the same satisfaction, demographic A tends to click more than demographic B
- Systemic difference in user satisfaction due to the search engine

... we need to disentangle them!

Outline

- 1 Motivation
- 2 Problems with naïve auditing
- 3 Data & Metrics
- 4 Proposed approaches:
 - 1 Context Matching
 - 2 Hierarchical Multi-level model
- 5 From metrics to satisfaction
- 6 Discussion

Proposed Approaches

1) Context Matching

2) Multi-level model

1. Context Matching:

selecting for activity with near-identical context

For any two users from different demographics,

- 1. Same Query
- 2. Same Information Need:
 - 1. Control for user intent: same final SAT click
 - 2. Only consider navigational queries
- 3. Identical top-8 Search Results

1.2 M impressions19K unique queries617K users

Age-wise differences in metrics disappear

- General auditing tool: robust
- Very low coverage across queries
 - Did we control for too much? lose over 60% of data!

Proposed Approaches

1) Context Matching

2) Multi-level model

Query-level Multilevel Model

- A hierarchical approach that treats the data as a mixture of distributions based on demographics and queries
- Non-nested multi-level model
 - Users & Queries: nested within non-nested age and gender groups & topics
 - second level captures variation with individual query properties
- Age effects
- Gender effects
- Topic effects
- <age, gender, topic> interaction effects

$$E(Y) = f^{-1}(\alpha_{agt} + \beta_{agt}X)$$

$$\begin{pmatrix} \alpha_{agt} \\ \beta_{agt} \end{pmatrix} = \begin{pmatrix} \mu_0 \\ \mu_1 \end{pmatrix} + \begin{pmatrix} \alpha_a \\ \beta_a \end{pmatrix} + \begin{pmatrix} \alpha_g \\ \beta_g \end{pmatrix} + \begin{pmatrix} \alpha_t \\ \beta_t \end{pmatrix} + \begin{pmatrix} \alpha_{a \times g \times t} \\ \beta_{a \times g \times t} \end{pmatrix}$$

$$\begin{pmatrix} \alpha_k \\ \beta_k \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma_k \right) \quad k \in \{a, g, t\}$$

Specific example: $\mathrm{GU}_i \sim \mathcal{N}(\alpha_{agt} + \beta_{agt} X_i, \sigma_y^2)$

Age-wise differences appear again: bigger differences for harder queries

Outline

- 1 Motivation
- 2 Problems with naïve auditing
- 3 Data & Metrics
- 4 Proposed approaches:
 - 1 Context Matching
 - 2 Hierarchical Multi-level model
- 5 From metrics to satisfaction
- 6 Discussion

From Metric to Satisfaction

- Estimating absolute satisfaction is non-trivial
- We estimate relative satisfaction by considering pairs of impressions
 - which impression led to a higher satisfaction
- Construct a conservative "highprecision, low-recall" proxy for pairwise satisfaction
 - by only considering "big" differences in observed metric for the same query
- Logistic regression model for estimating probability of impression i being more satisfied than impression j:

```
Algorithm 1 Compute satisfaction label
```

- 1: if $RR_i < RR_j$ then return +1
- 2: if $RR_i > RR_i$ then return -1
- 3: if $GU_i GU_j > \delta_{GU}^1$ then return +1
- 4: if $GU_j GU_i > \delta_{GU}^1$ then return -1
- 5: if $SCC_i SCC_j > \delta^1_{SCC}$ then return +1
- 6: if $SCC_j SCC_i > \delta_{SCC}^1$ then return -1
- 7: if $GU_i GU_j > \delta_{GU}^2 \wedge SCC_i SCC_j > \delta_{SCC}^2$ then return +1
- 8: if $GU_j GU_i > \delta_{GU}^2 \wedge SCC_j SCC_i > \delta_{SCC}^2$ then return
- 9: else return 0

 $P(S_i \succ S_j) = logit^{-1}(\beta_0 + \beta_{a_i}a_i + \beta_{a_j}a_j + \beta_{g_i}g_i + \beta_{g_j}g_j + \beta_{ij}a_ia_jg_ig_j)$

Again, see a small age-wise difference in satisfaction

Older users are slightly more satisfied than younger users

Discussion

- Auditing is more nuanced than merely measuring metrics on demographically-binned traffic
 - developed techniques to auditing search engines
- We find light trend towards older users being more satisfied.
- General framework for internally auditing systems
 - Plug-in different metrics
 - Plug-in different demographics/user groups

Future Work

- >develop metrics which are not confounded with demographics
- ➤ Investigate causes of metric differences
 - ➤ Query level analysis
 - ➤ SERP level analysis
- ➤ Dwell time thresholds for SAT prediction based on demographic information

Auditing is more nuanced than merely measuring metrics on demographically-binned traffic.

General framework for auditing systems

Plug-in different metrics

Plug-in different demographics/user groups

Thank You!

Rishabh Mehrotra

PhD candidate @ UCL http://www.rishabhmehrotra.com

@erishabh r.mehrotra@cs.ucl.ac.uk

Future Work

Query	Demographics			Metric Difference
essential oils guide	Female Age 2	VS	Male Age 4	4.5
make your own game	male3	VS	female3	4.25
macbook pro vs macbook air	Female2	VS	male3	3.9
editing software for youtube videos	Male2	VS	male3	3.83333333333333
emotions	Male2	VS	male4	3.5
avaya phone manual	Female3	VS	male4	3.5
catholic saints	Male4	VS	male3	3.5
futures market	Male3	VS	male5	3.3333333333333
medal of honor walkthrough ps3	Male3	VS	female2	3.2142857142857144
all wheel drive cars	Male4	VS	female4	3
kob tv albuquerque news 4	Female4	VS	male4-min	3
foods high in iron	Female3	VS	female4	3
478-288-1122	Male3	VS	male4	2.95
cheeseburger dip	Female4	VS	male4	2.83333333333333
argosy capital	Male3	VS	male4-min	2.5

External Auditing

- Experiment on a publicly available dataset
- 2 weeks logs of comScore data
- Use PCC metric to gauge satisfaction
- Probability of impression i being more satisfied than impression j:

$$P(S_i \succ S_j) =$$

$$logit^{-1}(\beta_0 + \beta_{a_i}a_i + \beta_{a_j}a_j + \beta_{g_i}g_i + \beta_{g_j}g_j + \beta_{ij}a_ia_jg_ig_j)$$

Age

Age j

Future Work

Demographic distribution of user activity

Characterizing Demographics: Gender

External Auditing

- Experiment on a publicly available dataset
- 2 weeks logs of comScore data
- Use PCC metric to gauge satisfaction
- Probability of impression i being more satisfied than impression j:

$$P(S_i \succ S_j) = \log t^{-1} (\beta_0 + \beta_{a_i} a_i + \beta_{a_j} a_j + \beta_{g_i} g_i + \beta_{g_j} g_j + \beta_{ij} a_i a_j g_i g_j)$$

Age j

Characterizing Demographics:

<20 20-30 30-50 50-70 70-100 >100 & NULL

% Tail Queries

Some highly discriminating queries in terms of P(D) Q):

Age <20	Age: 20-30	Age: 30-50	Age: 50-70
periodic table	debt	spellingcity	ourtime.com dating
mathway	dating	slickdeals	hairstyles women over 50
graphing calculator	school credit	www.linkedin.com	social security benefits

- Young user , Old user
- Issue same query
- See search results
- How satisfied are you?

Query level Difficulty

- X: Feature corresponding to inherent difficulty of query
- Typical methods (reformulations, dwell times) employ user behavior – correlated with demographics
- Need a measure unconfounded with demographics
- Method:
 - Per demographic order query by increasing order of avg GU score
 - Compute per demographic percentile of the query (~query's difficulty in each demographic)
 - Mean of percentiles across demographics

Algorithm 1 Compute satisfaction label

- 1: if $RR_i < RR_j$ then return +1
- 2: if $RR_i > RR_i$ then return -1
- 3: if $GU_i GU_j > \delta_{GU}^1$ then return +1
- 4: if $GU_j GU_i > \delta_{GU}^1$ then return -1
- 5: if $SCC_i SCC_i > \delta^1_{SCC}$ then return +1
- 6: if $SCC_i SCC_i > \delta^1_{SCC}$ then return -1
- 7: if $GU_i GU_j > \delta_{GU}^2 \wedge SCC_i SCC_j > \delta_{SCC}^2$ then return +1
- 8: if $GU_j GU_i > \delta_{GU}^2 \wedge SCC_j SCC_i > \delta_{SCC}^2$ then return -1
- 9: else return 0