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Abstract

As humans seek to collaborate with, learn from, and better understand artificial intelligence
systems, developing AIs that can accurately emulate individual decision-making becomes
increasingly important. Chess, a long-standing AI benchmark with precise skill measurement,
offers an ideal testbed for human-AI alignment. However, existing approaches to modeling
human behavior require prohibitively large amounts of data from each individual, making
them impractical for new or sparsely represented users. In this work, we introduce Maia4All,
a framework designed to learn and adapt to individual decision-making styles efficiently, even
with limited data. Maia4All achieves this through a two-stage optimization process: (1) an
enrichment step, which bridges population and individual-level human behavior modeling
with a prototype-enriched model, and (2) a democratization step, which leverages ability
levels or user prototypes to initialize and refine individual embeddings with minimal data.
Our experimental results show that Maia4All can accurately predict individual moves and
profile behavioral patterns with high fidelity, establishing a new standard for personalized
human-like AI behavior modeling in chess. Maia4All achieves individual human behavior
modeling in chess with only 20 games, compared to the 5,000 games required previously,
representing a significant improvement in data efficiency. Our work provides an example of
how population AI systems can flexibly adapt to individual users using a prototype-enriched
model as a bridge. This approach extends beyond chess, as shown in our case study on
idiosyncratic LLMs, highlighting its potential for broader applications in personalized AI
adaptation.

1 Introduction

The rise of artificial intelligence (AI) systems that rival or surpass human ability in domains where people
remain active has introduced the possibility of collaborating with and learning from AI agents. A line of
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research has pursued this vision in the model system of chess, in which AI became superhuman 20 years
ago, people vary widely in their ability, and vast detailed datasets of action traces abound. Since capturing
human decision-making style is a prerequisite to algorithmically-informed teaching and collaboration, previous
work has focused on creating AI agents that mimic human play (McIlroy-Young et al., 2020; 2022; Jacob
et al., 2022; Tang et al., 2024). Further, since capturing individual decision-making style is a prerequisite to
personally tailored algorithmic instruction, researchers have developed models of how specific people play chess,
surpassing population models in their accuracy rates on their target individual’s decisions (McIlroy-Young
et al., 2022).

However, these fine-tuning-based models of individual decision-making require extraordinary amounts of
data per person to function. When Maia, a human-like chess engine, was fine-tuned to play like specific
individuals, gains in accuracy over base Maia were only achieved when the player had 5,000 games worth of
data (McIlroy-Young et al., 2022). This is an immense amount of game-playing; a typical person would take
around 1,000 hours to play this many games, which is equivalent to almost 25 weeks of full-time work at
40 hours per week. To put this in perspective, less than 1% of players on Lichess, a popular online chess
platform, have played at least 5,000 games. Therefore, existing approaches for modeling individual behavior
fall short of being full solutions to the problem, because they don’t work for the vast majority of people. In
order for everyone to benefit from algorithmically-informed teaching, learning, and collaboration, we first
need another way to capture individual decision-making style—one that works in a much more data-efficient
manner.

How could we go about modeling individual-level decision-making behavior for the everyday person with
much more modest amounts of data available? This is a difficult task for two reasons. First, existing models
for modeling human decision-making, such as Maia and Maia-2 (McIlroy-Young et al., 2022; Tang et al., 2024),
are population models. This, as we will see, makes direct fine-tuning ineffective, especially for low-resource
players. Second, human action prediction is formulated as a generative task to predict the next move that
requires a model with strong generalization capabilities, which is particularly hard to achieve in a low-resource
environment.

In this work, we propose a novel approach that produces Maia4All, a model that overcomes both of these
challenges. Strikingly, Maia4All can model successfully individual-level play with only 20 games of data, in
stark contrast to the previous requirement of at least 5,000 games. While Maia-2 shows virtually no progress
when given 20 games of data played by a specific individual, and Maia fine-tuned with 1,000 games even gets
worse than a base model, Maia4All significantly rises in accuracy from a baseline of 51.4% to 53.2%—a
comparable rise to the accuracy gains reported in previous work using 5,000 games per player (McIlroy-Young
et al., 2022). By this measure, our approach is 250 times more data-efficient than prior methods.

We achieve data-efficient modeling of individual behavior in chess with two methodological contributions.
First, after showing that straightforward fine-tuning fails, we design a novel two-stage fine-tuning approach.
First, we enrich Maia-2 by fine-tuning it to a diverse set of prototype players with rich game histories in order
to adapt the model parameters from population-level modeling to individual-level modeling. Empirically,
this makes it easier for the model to further adapt to low-resource players. In the second stage, we further
fine-tune this prototype-infused model with low-resource player data. This two-stage approach is surprisingly
effective—fine-tuning directly on low-resource players doesn’t work, but first enriching the model with a
carefully-selected set of prototype player data is key to our eventual success. Our second contribution
is to start with a discriminative task instead of attempting the difficult generative task directly; we first
find the most similar prototype player to the target player we want to model with a prototype-matching
meta-network. Once we’ve identified a suitable prototype player, we initialize the target player’s embedding
with the prototype’s embedding, and fine-tune on their limited data with this much better initialization.

Our framework provides state-of-the-art individual behavior modeling in chess, which can open the door
to personalized chess teaching and learning. Beyond chess, our novel two-stage design has potential to
benefit other domains that require data-efficient adaptation to individual behavior. To demonstrate its
broader applicability, we include a case study on idiosyncratic LLMs, showing how our two-stage optimization
framework enables LLMs to mimic individual writers effectively from limited data.
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2 Related Work

Human Behavior Modeling in Chess. The challenge of creating a chess engine that can outplay any
human was solved over 20 years ago. The research focus then shifted towards the problem of extracting
useful knowledge from these superhuman systems. A direct way of doing this is probing an AI chess engine
in a human representation space. Evidence of human chess concepts learned by AlphaZero can be found
and measured by linear probes (McGrath et al., 2022); furthermore, AlphaZero also encodes knowledge that
extends beyond existing human knowledge but can be successfully taught to humans (Schut et al., 2023).
Another direction is the creation of ‘behavioral stylometry’ models that can identify chess players from the
moves they play (McIlroy-Young et al., 2021). Moreover, efforts have been made towards creating systems
that strive for human-likeness over sheer strength (McIlroy-Young et al., 2020; Jacob et al., 2022; Tang et al.,
2024; Zhang et al., 2024) in which models are trained to predict the next move a human will play, instead of
optimizing for winning the game. In addition to predicting human actions at the population level, the models
have been fine-tuned for individual-level human behavior modeling in data-rich settings (McIlroy-Young
et al., 2022).

Few-shot Learning and Meta Learning. Few-shot learning focuses on the ability of models to learn and
generalize from a very limited amount of labeled training data (Fei-Fei et al., 2006; Fink, 2004; Wang et al.,
2020). Modeling unseen players follows the few-shot learning paradigm, where players’ behavioral patterns
are revealed by a limited collection of historical behaviors. Meta learning is a main approach to few-shot
learning, aiming to improve novel tasks’ performance by training on similar tasks. Meta learning can be
categorized into metric-based methods (Vinyals et al., 2016; Snell et al., 2017; Koch et al., 2015; Sung et al.,
2018) that aim to learn a similarity or distance function over objects and represent the relationship between
inputs and the task space, model-based methods (Santoro et al., 2016; Munkhdalai & Yu, 2017), which
focus on designing models with internal mechanisms to quickly adapt to new tasks, and optimization-based
methods (Ravi & Larochelle, 2016; Finn et al., 2017; Nichol et al., 2018; Raghu et al., 2019) that aim to
learn an initialization such that the model can adapt faster with few examples from there. Maia4All can
be regarded as a meta learning framework in that we learn a prototype matching meta network for player
embedding initialization.

Imitation Learning. Our work can also be viewed as related to the imitation learning literature, where
models are trained to perform tasks after observing expert human demonstrations Schaal (1999); Zare et al.
(2024); Wang et al. (2019). In the imitation learning context, the model is usually attempting to learn a
value function (inverse RL) (Ng et al., 2000), or to quickly learn an optimal solution to a given optimization
problem (Schaal, 1999). In this paper, we attempt to learn a flawed, human value function using non-expert
demonstrations. Additionally, many imitation learning methods require the model to be in the same, or
similar, state to the demonstrated one (Ho & Ermon, 2016; Zare et al., 2024) which is a condition that is
impossible to guarantee in chess outside of the early game.

3 Methodology

Our methodology consists of two major steps. Starting from a base model (Maia-2 in our case), we first
conduct an enrichment step that enables the model to better capture individual-level patterns. Second, we
perform a democratization step that adapts the model to work on unseen players with limited data. We
present preliminary details about the base model followed by our two-step methodology.

3.1 Base Model: Maia-2

Choosing a Base Model. Maia-2 (Tang et al., 2024) is a state-of-the-art human-like chess AI designed to
predict human moves across skill levels using a unified transformer architecture. Unlike traditional chess
AIs such as AlphaGo (Silver et al., 2016) and AlphaZero (Silver et al., 2017), which focus on best-move
prediction and optimal play, Maia-2 is explicitly trained to model human decision-making, making it a
strong foundation for our work. Maia-2 improves upon its predecessor, Maia (McIlroy-Young et al., 2020),
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Figure 1: (Left) The architecture of our base model Maia-2, which uses population embeddings to adapt
to different skill levels. We enrich Maia-2 by extending population embeddings to individual embeddings.
(Right) The procedure of Prototype-Informed Initialization and the architecture of the Prototype Matching
Network.

by learning a unified parameter space where move prediction is modulated through skill-level embeddings,
rather than relying on separate models for different skill levels. This design makes Maia-2 an ideal base
model for fine-tuning toward individual behavior modeling, as its skill-level embeddings, initially trained on
population-level data, can be further adapted to capture the unique patterns that characterize individual-level
play. Allie (Zhang et al., 2024) is another approach to human move-matching which introduced an adaptive
Monte-Carlo Tree Search with pondering time prediction method. We chose Maia-2 as our base model for
two reasons specific to individual modeling. First, Allie models skill levels with linear interpolation between a
weak and a strong control token, which may be inadequate for capturing playing style that is beyond strength
or non-linear in nature. Unlike Maia-2’s skill-level embeddings that can be fine-tuned from population-level
representations to adapt to individuals, Allie’s interpolation mechanism does not provide a straightforward
path for individual adaptation. Second, Allie requires a complete move history from the starting position for
prediction, whereas Maia-2 operates on single board positions, which is more widely applicable in cases such
as modeling individual puzzle solving, where move history from the starting position is often unavailable.

Architecture. We first present a concise overview of Maia-2’s architecture. As shown in Figure 1, Maia-2
consists of a chess position encoder, a skill encoder, and transformer-based skill-aware blocks. The model takes
a chess position p, represented as a multi-channel tensor, along with skill levels of the active player r(a) and
the opponent player r(o) as inputs, where r(·) denotes the mapping from a player to its skill level. Following
the original design of Maia-2, when modeling only the behavior of the active player without considering
variations in opponent strength, we set r(a) = r(o) to ensure a consistent skill representation. We denote the
policy head prediction of Maia-2 for player i as:

a = f(p, r(i)|θ), (1)

where θ represents the trainable parameters in Maia-2. A ResNet-based (He et al., 2016) position encoder
first encodes chess positions into position embeddings. The position embeddings then undergo channel-wise
patching and linear transformation (Tang et al., 2024), and are fed into the residual flows of transformer
blocks. Within these blocks, Maia-2 performs skill-aware attention to fuse skill embeddings with the position
encodings. Maia-2 applies a vanilla ViT feed-forward network and a Add & Norm component to obtain the
output of each block and add it back to the model’s residual stream. The model’s output includes a policy
head for move prediction, a value head for game outcome prediction, and an auxiliary information head for
accelerating game rule learning from objective training goals. We focus exclusively on the policy head, as it is
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Figure 2: Overview of our proposed framework.

responsible for modeling individual player behavior, whereas the value and auxiliary heads in Maia-2 are
mainly used as proxy rewards to guide the model.

3.2 Enrichment Step

The first step of our methodology is an enrichment step that adapts the base model so it can capture
individual-level behavior instead of only aggregated population-level patterns.

Population Modeling in Maia-2. Chess players can be meaningfully grouped by skill level (McIlroy-Young
et al., 2020; 2022), which is quantified using widely adopted rating systems (Elo, 1967; 1978). Maia-2’s skill
encoder follows this norm and is designed for player populations at different skill levels. Let EP ∈ R|EP |×d

be the matrix of population embeddings, where each row corresponds to the embedding with dimension d of
a group of players that share a similar strength:

EP = [e(0,1100], e(1100,1200], ..., e(2000,+∞)]⊤. (2)

Given a player i of skill level r(i), we look up the embedding matrix EP by rows to map the player skill level
to its embedding ei = EP [r(i)]. We decompose pre-trained Maia-2 parameters θ = {ϕ, EP } for clarity:

a = f(p, r(i)|ϕ, EP ), (3)

where ϕ denotes the model parameters except for the population embedding matrix. Given the universal set
of parameters ϕ, Maia-2 adapts to different player populations by dynamically selecting the corresponding
population embedding, allowing the model to account for variations in player skill levels.

Enriching Maia-2. To extend Maia-2 beyond population-level modeling, we generalize population embed-
dings (e.g. one entry per entire rating range of players) to individual embeddings (e.g. one entry per player),
enabling the model to capture variations in individual player behavior much more precisely. Given a set
of individual players I (the choice of which is still to be determined), we denote their embedding matrix
as EI ∈ R|EI |×d, where each row corresponds to a specific player. Given a player i ∈ I, we look up EI by
rows to obtain the corresponding embedding, which is initialized with the player’s population embedding
before the enrichment step: ei = EI [i]← EP [r(i)]. The enriched Maia-2 model retains the same universal
parameters ϕ as Maia-2 at initialization:

a = f(p, i|ϕ, EI). (4)

Since ϕ has already been trained to model diverse groups of players, it serves as a strong foundation for
fine-tuning toward capturing individual-level variation. To enrich the model so it captures individual-level
behavior, we minimize the following training objective:

L(ϕ, EI) = − 1∑
i∈I |Pi|

∑
i∈I

∑
p∈Pi

log P (a∗|f(p, i|ϕ, EI)), (5)

where Pi denotes the set of historical positions of player i and a∗ is the ground-truth move made by the
player. After fine-tuning, the model refines both ϕ and EI , producing updated parameters ϕ′ and E′

I in the
Enriched Maia-2 model:

a = f(p, i|ϕ′, E′
I) (6)
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Prototype Selection. While this enriched model can be directly used to model the behaviors of a pre-defined
set of players I, it is unrealistic to include all players (e.g., the 11 million players on Lichess). Firstly, learning
separate embeddings for massive sets of players is challenging for computational and model learnability
reasons. But even more importantly, most players haven’t played enough games to support an accurately
learned embedding for them. Furthermore, there are always new chess players, who would require constant
re-training to support. Therefore, this enrichment step produces a crucial intermediate but incomplete model
on the way towards our goal of truly efficient and effect individual behavior modeling. It will help facilitate
further adaptation to all individual players, particularly those with sparse data.

Which individual players should be in our set I? This extensibility requirement guided us to carefully select
players for this enrichment step with two key criteria. First, players should have sufficient historical data (i.e.
completed games) to ensure that their decision-making styles can be well learned in EI , and so ϕ′ will not be
corrupted by under-trained embeddings. Second, the player set should be balanced across different skill levels
to prevent the model from being biased toward any particular skill level. Ensuring a diverse distribution
of players helps this enriched model learn a well-calibrated set of parameters ϕ′ that generalizes effectively
across individual players with varying levels of expertise. We refer to these carefully selected players as
prototypes, and the enriched model trained on these prototypes as Prototype-Enriched Maia-2, which serves
as a foundation for further adaptation to a much broader range of individual players.

3.3 Democratization Step

The enrichment step transitions model parameters ϕ′ from being optimized for population-level modeling to
being optimized for individual-level modeling. As previously discussed, it is infeasible to use the enriched
model directly on all players, but it is now much more adaptable than the base model to unseen players
U—any one of the vast majority of players who were not selected as prototypes. The key reason for this
adaptability is that ϕ′ becomes more responsive to individual embeddings, enabling more precise modulation
of move predictions. This effect arises because the skill embeddings, initially constrained to 11 population
embeddings in the base model Maia-2, have been expanded to a much larger set of individual embeddings
spanning a diverse player distribution, requiring the model to distinguish players with greater sensitivity.

We use Prototype-Enriched Maia-2 as an intermediate model to efficiently adapt to unseen individual players—
even those with minimal data to learn from. This second and final step in our methodology democratizes
Maia-2 and Prototype-Enriched Maia-2, making individual behavior modeling accessible to all players, not
just those with extensive historical data. We call this model Maia4All.

To adapt to an unseen player u from the intermediate model, we minimize the loss function:

L(eu) = − 1
|Pu|

∑
p∈Pu

log P (a∗|f(p|ϕ′, eu)), (7)

where Pu denotes the set of historical positions of unseen player u, a∗ is the ground-truth move made by u,
and eu denotes the individual embedding for u. Thus, eu is optimized towards modeling u, denoted as e′

u,
and the policy head prediction is given by:

a = f(p|ϕ′, e′
u). (8)

Strength-Informed Initialization. Although ϕ′ lays a strong foundation for democratizing Maia-2 to
unseen players, an effective initialization strategy for unseen player embeddings is crucial for data-efficient
adaptation. To address this, we propose to initialize unseen player embeddings using prior knowledge, enabling
more efficient parameter updates. A natural source of prior knowledge is player strength, as reflected by their
ratings. In chess, decision-making style is strongly influenced by a player’s strength. For example, a novice
is unlikely to employ the deep strategic insights characteristic of more advanced players. Therefore, player
strength serves as a natural reference point for initializing player embeddings:

eu
Initialize←−−−−− EP [r(u)]. (9)
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However, player strength is only one dimension of a richer space of behavior. People not only vary in the
overall quality of their play, but also in their decision-making style. In chess, people can tend towards being
more aggressive or defensive, positional or tactical, intuitive or calculating, etc. Although overall quality
metrics like ratings capture a lot of variation, it is likely that decision-making style is more variable and
requires more careful initialization. Therefore, we aim to initialize the unseen player embedding eu with
similar player embeddings.

Prototype-Informed Initialization. Beyond the more responsive universal parameters inherited from
the intermediate model, the learned prototype embeddings EI also play a crucial role in prior-informed
initialization by leveraging similarities with existing prototypes. Since our prototype selection ensures a
balanced distribution across skill levels, the prototype set I should ideally cover the diverse player styles across
skill levels. Furthermore, because prototypes are chosen from players with extensive game histories, their
embeddings are will be well-trained and serve as reliable references for initializing new player embeddings.

We train a transformer-based meta-network for prototype matching, i.e., given an unseen player, identifying
similar prototypes that will be useful for initialization. As shown in Figure 1 (Right), during training, given
a collection of historical moves from a prototype player i ∈ I, we extract position features before and after
the player’s ground-truth actions using ResNet-based towers pre-trained by Maia-2. To encode player style,
we apply stacked Transformer layers with mean pooling to aggregate historical action embeddings into a
single history embedding. This embedding is then fed into a classification head with |I| outputs, designed to
identify the corresponding prototype player. Since we use prototype players for training, the true identity of
the player generating the history is naturally available, allowing us to train the |I|-class classifier using a
cross-entropy loss. We refer to this model as the Prototype Matching Network (PMN).

During inference, we input the historical moves of an unseen player u ∈ U into PMN to assess the similarity
between the player’s style and the prototype players. The model’s predictions are passed through a softmax
function, and the top-k most similar prototypes are selected. Their embeddings are then combined using a
weighted average to serve as the prototype-informed initialization of eu.

Note that both prototype matching and our final task human move prediction exploit the same set of historical
behaviors of unseen players. However, prototype matching is a much easier task than the latter. This is
because prototype matching is essentially a discriminative task against a fixed set of classes (prototypes), and
human move prediction is a next-move generative task that requires a deeper understanding of the player’s
decision-making style. Therefore, we initialize the player embedding with the easier prototype matching task
to get a rough understanding of how similar players behave and further calibrate the player embedding with
human move prediction loss.

4 Experiments

We now conduct extensive experiments to evaluate how our novel two-step methodology for efficient individual-
level behavior modeling performs and compares with strong baseline methods.

4.1 Experimental Settings

Datasets. Online chess platforms feature a variety of game types, including blitz, rapid, and classical, each
representing games played at different time controls (amount of time given to each player for the whole
game). We use data derived from the open database provided by Lichess, a well-known large open-source
chess platform. In Lichess, since each game type is given a separate rating, ratings across different game
types are not comparable (e.g. a rating of 1800 in “Rapid” is significantly weaker than a rating of 1800 in
“Blitz” on Lichess). We focus on Blitz games because it is data-rich, and do not mix with other game types to
ensure the ratings are meaningfully comparable. For prototype players, we use their game history in 2023 to
compromise between the changing player strengths and styles over time and the availability of rich historical
data. We follow Maia-2 by dividing players into 11 bins: under 1100, over 2000, and nine 100-point wide
strength bins from 1100 to 2000, i.e., |EP | = 11. During training for Prototype-Enriched Maia-2, we use the
game history of the N most frequent players in each strength level, i.e., |EI | = 11N . For testing, we use 10
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Table 1: Performance on unseen players under low-resource settings.
Move Prediction Accuracy ↑ Move Prediction Perplexity ↓

#Positions 20,000 8000 2000 800 20,000 8000 2000 800
#Games ≈500 ≈200 ≈50 ≈20 ≈500 ≈200 ≈50 ≈20
Maia 0.5132 0.5132 0.5132 0.5132 5.4530 5.4530 5.4530 5.4530
Maia-2 0.5146 0.5146 0.5146 0.5146 4.5316 4.5316 4.5316 4.5316
Maia-2-Strength 0.5195 0.5196 0.5193 0.5189 4.4932 4.4939 4.4976 4.5022
Maia4All-Strength 0.5308 0.5298 0.5279 0.5249 4.3077 4.3238 4.3658 4.4151
Maia4All-Prototype 0.5365 0.5348 0.5334 0.5322 4.2295 4.2431 4.2669 4.2988

prototype players and 10 unseen players per strength level. To simulate unseen players with limited game
history, we restrict their training positions to the first M positions while evaluating their performance on
the last 2048 positions recorded in 2023. This results in test datasets containing 225,280 positions for both
prototype and unseen players.

Implementation Details. To maintain a consistent perspective from both sides of players, we used board
flipping during both training and testing; that is, positions with black to move were mirrored so that
all analyses could be conducted from the white side’s viewpoint. Consistent with prior work, we further
refined our dataset through game and position filtering, selecting games with available clock information
and disregarding the initial 10 plies of each game as well as positions where either player had less than 30
seconds remaining. This filtering procedure mitigates the noise introduced by decisions made under extreme
time pressure, which could skew the true representation of a player’s strength and style. We report all
hyperparameters involved in training in Table 6 in the Appendix.

Evaluation Protocol. We evaluate our method with top-1 move-matching accuracy, which is essentially an
extensive human study: we observe what humans would play in natural situations recorded by the Lichess
Database, and see if it matches the predicted move of our system. We also measure the perplexity of move
predictions, which reflects the model’s confidence in its predictions. A lower perplexity indicates the model
is more confident and accurate in human move prediction, as it corresponds to a higher likelihood (lower
log-likelihood) of the correct human move. We report the results with three categories: Skilled (Blitz rating
up to 1600, which slightly exceeds the initial rating of 1500), Advanced (Blitz rating between 1600 and 2000),
and Master (Blitz rating over 2000, roughly comprising the top 10% of players Duplessis).

Baselines. Maia (McIlroy-Young et al., 2020) is a set of 9 separate models, each trained on a different set
of players at different skill levels from 1100 to 1900. Maia-1100 models the weaker players, Maia-1500 the
intermediate players, and Maia-1900 the higher-skill players. We choose one of the Maia models for each
population such that it is the nearest to their strength level for fair comparison. Since Maia-Individual (McIlroy-
Young et al., 2022) is designed for data-rich settings, the published results of Maia-Individual indicate that it
requires 5,000 games per player to show improvement over Maia. However, Maia4All, as a method specifically
designed for low-resource individual behavior modeling, at most has access to 100,000 positions (≈ 2,500
games). Therefore, we do not include Maia-Individual as a baseline, since it does not apply to the sparser
settings we consider (and which cover the vast majority of players on Lichess).

4.2 Results

Base model: Maia2. The key difference between Maia and Maia-2 lies in their approach to modeling
player’s skill levels. Maia requires the selection of the appropriate sub-model based on a player’s strength.
In contrast, Maia-2 employs a unified modeling approach, allowing it to dynamically adapt to various skill
levels within a single model. This adaptability is enabled by skill-aware attention, which modulates model
predictions based on the corresponding skill embedding, which represents a population or an individual.
For fair comparison, we select the sub-Maia model that matches each player’s strength level. For Maia-2,
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Table 2: Performance on unseen players with relatively rich histories (100,000 positions ≈ 2,500 games).
Move Prediction Accuracy ↑ Move Prediction Perplexity ↓

Skill Categories Skilled Advanced Master Overall Skilled Advanced Master Overall
Maia 0.4996 0.5099 0.5285 0.5132 5.8687 5.4642 5.1300 5.4530
Maia-2 0.5008 0.5158 0.5364 0.5146 4.7900 4.4389 4.1936 4.5316
Maia-2-Strength 0.5071 0.5212 0.5400 0.5199 4.7264 4.4113 4.1760 4.4903
Maia4All-Strength 0.5226 0.5376 0.5478 0.5336 4.4504 4.1733 4.0291 4.2599
Maia4All-Prototype 0.5261 0.5408 0.5554 0.5381 4.4018 4.1048 3.9219 4.1899
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Figure 3: Move prediction accuracy (Left) and perplexity (Right) on prototype players.

skill embeddings are initialized using the corresponding population embedding that aligns with the player’s
strength level. As shown in Table 1 and Table 2, Maia-2 consistently outperforms Maia across all evaluation
metrics and settings. While top-1 accuracy gains are important, they may overshadow more significant
improvements in prediction quality. Such results show that Maia-2 can not only more accurately predict
human behaviors but also be much more certain about its predictions. These results support our choice of
adopting Maia-2 as the base model.

Maia-2-Strength. We developed a version of Maia4All that skips the enrichment step. Since the prototype
embeddings are obtained within this step, prototype-informed initialization is not available. Therefore, we
apply strength-informed initialization for fair comparison. We refer to this model as Maia-2-Strength. As
shown in Table 1 and Table 2, directly fine-tuning from the base model for population modeling barely
improves human move prediction accuracy and perplexity under low-resource and relatively data-rich settings;
low-resource move matching only improves by 0.5 percentage points (p.p.) over the base model. This
demonstrates the need for our two-stage approach and prototype-informed initialization.

Prototype-Enriched Maia-2. Previous work McIlroy-Young et al. (2022) has shown that fine-tuning
population models to individual players requires a substantial amount of data. Specifically, the previous
state-of-the-art sees performance improvements over the base population model emerge only after fine-tuning
on 5,000–10,000 games (≈ 200,000–400,000 positions) per player, whereas with only 1,000 games (≈ 40,000
positions), the fine-tuned model underperformed compared to the base model. In contrast, Prototype-Enriched
Maia-2 significantly outperforms both Maia and Maia-2 across all evaluation metrics, where move prediction
accuracy and perplexity are shown in Figure 3. Notably, our model achieves these improvements using a
maximum of 100,000 positions (≈ 2,500 games) per player—an amount that lies between the thresholds
where Maia fine-tuning is ineffective (1,000 games) and where it becomes beneficial (5,000 games). These
results highlight the effectiveness of our enrichment step, demonstrating that Prototype-Enriched Maia-2
requires far less historical data to accurately model individual decision-making styles while achieving superior
performance. Furthermore, the strong results indicate that the universal parameters ϕ′ successfully transition
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Table 3: Performance of prior-informed initialization.
Move Prediction Accuracy ↑ Move Prediction Perplexity ↓

#Positions 20,000 8,000 2,000 800 20,000 8,000 2,000 800
Strength-Init 0.5008 0.5008 0.5008 0.5008 4.8344 4.8344 4.8344 4.8344
Prototype-Init 0.5180 0.5175 0.5173 0.5167 4.5360 4.5333 4.5400 4.5459
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Figure 4: Visualization of prototype-informed initialized unseen player embeddings.

from population-level modeling to individual-level modeling, making them well-suited for the downstream
democratization step to model unseen players. Additionally, these results support that the prototype
embeddings are well-learned, ensuring they serve as effective references for prototype-informed initialization.

Maia4All. We limit the democratization step to access 100,000 historical moves to demonstrate the reduced
size of historical data needed for achieving sufficient improvement. As shown in Table 2, the best performing
Maia4All variant, Maia4All-Prototype, outperforms Maia with over 2.5 percentage points in accuracy and
around 1.2 in perplexity (whereas Maia-Individual barely shows any improvement at this amount of data).
These results demonstrate Maia4All’s capability to adapt to unseen players with relatively rich data, and the
amount of data needed is significantly lower. In the human move prediction problem for amateur players,
the ceiling accuracy is far below 100% given the randomness and diversity of their decisions—even the same
player won’t always make the same decision when faced with the same position. Given this unpredictability,
a 2.5 percentage point gain is a significant improvement—around half of the gain in amateur human move
matching between Stockfish, the world’s strongest chess engine (which obviously plays much differently than
amateur humans) and base Maia, a model specifically designed to play like humans.

When even fewer historical behaviors are accessible, Maia4All can still adapt to unseen players with considerable
improvement in move prediction accuracy and perplexity. In particular, with only 800 positions (20 games,
which is considered incredibly few for human behavior modeling in chess), Maia4All can transfer its predictions
to unseen players with over 1.9 more percentage points and 1.1 lowered perplexity with prototype-informed
initialization. Note that the number of accessible positions is at most 20,000 positions (worth 500 games),
whereas fine-tuning Maia with 1,000 games actually results in negative improvement (McIlroy-Young et al.,
2022).

Prototype-Informed Initialization. Strength-Init and Prototype-Init in Table 3 represent strength
and prototype-informed initialization, respectively, without further adaptation in the democratization step.
Prototype-Init consistently outperforms Strength-Init across all data settings, explaining the superior per-
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Figure 5: Effects of the distribution of prototypes (a,b) and prototype quantity per strength level (c,d).

formance of Maia4All-Prototype over Maia4All-Strength. These results highlight the effectiveness of the
Prototype Matching Network and reinforce the importance of better initialization—demonstrating that a
strong foundation learned from a discriminative task (prototype matching) can enhance the final performance
of the generative task (next-move prediction).

We take a step further to examine the patterns of prototype-informed initialized unseen player embeddings
using t-SNE for dimensionality reduction. As shown in Figure 4, the embeddings exhibit a linear structure
in 2D space, with Skilled and Master players forming clusters at opposite ends and Intermediate players
concentrated along the middle. This indicates that prototype-informed initialization effectively encodes player
strength. Additionally, the dispersion of embeddings around cluster centers suggests that the prototype-
informed initialization also captures variations in individual playing styles.

Hyperparameter Study. The distribution of the prototypes to be matched is a hyperparameter. As shown
in Figure 5 (a) and (b), if we only include the prototypes from a biased distribution of the population, i.e,
only select from low/medium/high-level players, it will result in lowered move prediction accuracy and raised
perplexity compared to uniformly select N prototypes from each strength level. Such results support our
design choices of selecting the prototypes uniformly to cover the population space.

The number of prototypes N per strength level is also a hyperparameter. Choosing an appropriate N needs
to compromise between the representativeness of prototypes for each range, i.e., more prototypes can better
cover the player embedding space, and the difficulty in prototype matching, i.e., more prototypes means more
candidates to be classified against. This is evidenced by the results shown in Figure 5 (c) and (d). We evaluate
the top 1 matching accuracy of prototypical players under low-resource settings (800 positions). Increasing
N from 10 to 150 yields gradually lowered performance in prototype matching, while the best-performing
Maia4All is achieved with a trade-off between prototype matching accuracy and player embedding space
coverage.

5 Discussion

Behavioral Stylometry. The prototype matching network can be directly used for behavioral stylome-
try (McIlroy-Young et al., 2021), i.e., identifying players given their historical behaviors. Since we freeze the
shared parameters ϕ′ and only optimize player embeddings for unseen players, the player embeddings are
directly comparable within the same embedding space. Therefore, our design supports behavioral stylometry
off the shelf. As shown in Figure 5, with only 800 positions (around 20 games), our model can identify the
player with 89% accuracy with 1 shot from 1100 candidates (100 players per strength level with 11 levels).

Parameter Efficient Fine-Tuning. During the democratization step, we freeze the universal parameters
ϕ′ and optimize only the unseen player embedding eu. Table 4 compares this approach with an alternative
where ϕ′ is also optimized, revealing two key insights. First, when the unseen player has a very limited game
history, freezing ϕ′ leads to better performance, suggesting that it acts as a form of normalization to prevent
overfitting, which is particularly beneficial in extremely low-resource settings. Second, when more historical
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Table 4: Performance of Maia4All-Prototype with optimized or frozen universal parameters ϕ′.
Accuracy ↑ Perplexity ↓

#Positions 20,000 800 20,000 800
Optimized 0.5395 0.5297 4.1949 4.3753

Frozen 0.5365 0.5322 4.2295 4.2988

Table 5: Performance comparison of prototype-enriched prompt tuning under different training settings for
idiosyncratic LLM.

LM Loss ↓ Perplexity ↓
#Tokens 1000 2000 3000 1000 2000 3000
1-step 2.794 2.772 2.740 17.189 16.839 16.318
2-step 2.792 2.757 2.724 17.131 16.546 15.996

data is available—though still within a low-resource regime—optimizing ϕ′ provides a marginal improvement
over freezing it. However, fine-tuning only eu remains significantly more parameter-efficient while achieving
comparable results. This follows the principles of parameter-efficient tuning seen in the LLM literature, such
as Prompt-Tuning (Lester et al., 2021) and Prefix-Tuning (Li & Liang, 2021). Given these findings, our
original design of freezing ϕ′ ensures better scalability for democratizing large models to individuals with
minimal computational overhead while maintaining strong performance.

Maia4All Generalization. To demonstrate the broader capability of our approach beyond chess, we explore
the generalization towards Large Language Model (LLM) adaptation to low-resource authors, which we term
idiosyncratic LLM, as a case study. The key components of our method find natural analogs in this domain:
chess positions correspond to text sequences, player styles to writing styles, and next-move predictions to
next-token predictions.

Following our two-stage approach, we first select 100 authors with the richest text content from Project
Gutenberg (Project Gutenberg Literary Archive Foundation, 2003) as prototypes. We then enrich a base
LLaMA-3.1-8B (Meta AI, 2024) model by extending its vocabulary with author-specific tokens and fine-tuning
both the token embeddings and a set of LoRA parameters (Hu et al., 2021) dedicated to individualizing writing
styles. This process is analogous to how we enrich Maia-2 with prototype player embeddings. Simultaneously,
we train a ModernBERT-based (Warner et al., 2024) Prototype Matching Network (PMN) that learns to
identify stylistic similarities between text samples. For new authors, we initialize their token embeddings
through prototype matching and fine-tune only these embeddings while keeping other parameters fixed,
similar to the democratization step. We select test authors who are genuinely low-resource for the base model.
Starting from authors with the most limited texts in Project Gutenberg, we further identify the authors for
whom the base model exhibits higher language modeling loss than our prototype-enriched model’s average
validation loss. This criterion ensures we focus on authors whose writing styles are sufficiently unfamiliar to
the base model, resulting in a pool of 30 challenging cases.

Table 5 shows consistent improvements in language modeling loss and perplexity when tuning author
embeddings with our prior-informed initialization (2-step) compared to direct tuning with base model (1-step),
across different low-resource data settings from 1,000 to 3,000 tokens. These results suggest the effectiveness of
our framework in capturing individual characteristics from limited data generalizes beyond its original domain
in chess, demonstrating the potential in various domains requiring personalized behavior modeling. While we
use language modeling loss as a proxy for style adaptation, future work could explore more direct metrics for
evaluating writing style transfer, such as author-specific linguistic features or evaluation of stylistic similarity
from human expert. Details of our implementation and evaluation for this case study of idiosyncratic LLM
can be found in Appendix B.
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6 Conclusion

We introduce Maia4All, a data-efficient framework for modeling individual behavior through an enrichment
step and a democratization step. Maia4All can effectively capture individual playing styles even in extremely
low-resource settings. The successful extension of our framework to modeling individual writing styles in LLMs
suggests that our proposed strategy could potentially generalize beyond chess, offering a promising approach
for personalizing AI systems in more domains. While our framework achieves significant improvements in
data efficiency, it requires a set of prototype players with rich historical data for the enrichment step. This
dependency might limit its applicability in newer domains where such extensive behavioral traces are not yet
available. Additionally, although our LLM case study demonstrates potential generalizability, we primarily
validate our approach in chess where the action space is discrete and well-defined.
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A Maia4All Reproductibility

Table 6: Hyperparameter Settings. We follow the notations from Maia-2 (Tang et al., 2024).
Initial learning rate 1e−4

Weight decay 1e−5

Batch size (positions) 8192
Minimum move ply 10
Maximum move ply 300
Remaining seconds threshold 30
#Backbone blocks KConv 12
#Attention block KAtt 2
#Input channels Cinput 18
#Intermediate channels Cmid 256
#Encoded channels Cpatch 8
Player embedding dimension d 128
Attention head dimension dh 64
Attention intermediate dimension datt 1024
#Attention heads h 16
player per range N 100

Position Representation and Encoding. We follow the well-established prior works (McIlroy-Young
et al., 2020; Silver et al., 2017) to represent chess positions as multi-channel 8× 8 matrices, including:

• Piece Representation: The first 12 channels categorize the board’s pieces by type and color, with
one channel each for white and black Pawns, Knights, Bishops, Rooks, Queens, and Kings. A cell is
marked 1 to denote the presence of a piece in the corresponding location, and 0 otherwise.

• Player’s Turn: A single channel (the 13th) indicates the current player’s turn, filled entirely with 1s
for white and 0s for black, providing the model with context on whose move is being evaluated.

• Castling Rights: Four channels (14th to 17th) encode the castling rights for both players, with the
entire channel set to 1 if the right is available or 0 otherwise.

• En Passant Target: The final channel (18th) marks the square available for en passant capture, if
any, with 1 and 0s elsewhere.

One important departure from previous work is that we only use the current chess position, and not the
last few chess positions that occurred in the game (models have typically incorporated the six most recent
positions in the game). Many games with perfect information, including chess, can be modeled as alternating
Markov games (Littman, 1994; Silver et al., 2016), where future states are independent of past states given
the current game state. Therefore, the current chess position theoretically encapsulates all the information
necessary to make future decisions. Although human decision-making in chess may sometimes subtly depend
on the historical lead-up to the current position, these effects are anecdotally small.

In exchange, we gain two large practical benefits. First, modeling AI-human move matching in a Markovian
way vastly improves training efficiency by reducing the computational load via significantly smaller data
usage for each decision. Second, it also enhances flexibility, enabling our resulting model to make predictions
even without historical data, which is particularly advantageous in situations where only the current position
is available, like chess training puzzles or any position that didn’t necessarily occur in a full game.

Enrichment Step Training Results. We present detailed training dynamics of our Prototype-Enriched
Maia-2 model in Figure 6. The training process exhibits smooth optimization trajectory suggests that our
enrichment step successfully adapts the base model parameters to capture individual-level behavior patterns.
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Figure 6: Training dynamics of the Prototype-Enriched Maia-2 model

Table 7: Hyperparameter Settings for Prototype-Enriched Training.
Base Model LLaMA 3.1 8B
LoRA Rank 128
LoRA Target Modules Attention + FFN
LoRA Alpha 32
LoRA Dropout 0
Learning Rate 1e-4
Embedding Learning Rate 5e-5
Weight Decay 0.01
Batch Size 16
Gradient Accumulation Steps 8
Training Epochs 2
Warmup Ratio 0.1
Max Sequence Length 2048

The stable convergence is particularly noteworthy given that we are simultaneously training both the universal
parameters ϕ and a large set of individual embeddings EI , demonstrating the effectiveness of our prototype
selection criteria in ensuring model stability.

B Idiosyncratic LLM Reproducibility

Dataset. We use the Project Gutenberg dataset, which contains a vast collection of public domain books.
Each book is preprocessed by cleaning line breaks and whitespace, then chunked into sequences of 2048 tokens
with no overlap for efficient processing. We extract author information from the book metadata, filtering
out anonymous works and those with ambiguous authorship. From all others in the dataset, we select 100
prototypes based on two criteria:

• having the largest amount of publications in Project Gutenberg to ensure prevalence

• having sufficient text content (at least 1000 chunks) to ensure reliable style learning

Enrichment Step in LLM. We implement our two-stage framework using LLaMA 3.1 8B as the base model.
Our implementation focuses on efficient adaptation while preserving the model’s core capabilities. In the first
stage, we extend the model’s vocabulary with author-specific tokens (e.g., <author_Jack London>), creating
explicit anchor points for learning author-specific writing styles. We employ LoRA for parameter-efficient
fine-tuning, with hyperparameters listed in Table 7. The LoRA adaptation strategically targets key attention
modules and feed-forward layers, allowing the model to learn author-specific transformations while maintaining
its general language understanding capabilities. The training dynamics shown in Figure 7 demonstrate steady
convergence, which suggests effective learning of author-specific styles while maintaining the model’s general
language capabilities.
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Table 8: Hyperparameter Settings for Idiosyncratic LLM.
Initial learning rate (base) 1e−4

Weight decay 1e−5

Number of prototypes 100
Number of Training Tokens 1K, 2K, 3K
Number of Testing Tokens 5K
Top-k prototypes for matching 2
Temperature for prototype matching 0.5
Training Steps 100
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Figure 7: Training dynamics of the Prototype-Enriched Llama 3.1 8B.

To enable the prototype matching mechanism analogous to our chess implementation, we train a ModernBERT-
based Prototype Matching Network (PMN). The PMN learns to map text sequences to a space where stylistic
similarities between authors can be effectively measured. By training on chunks of 2048 tokens from each
prototype author’s works, the PMN achieves 94.7% accuracy on prototype classification. This high accuracy,
compared to the 1% random baseline with 100 prototype authors, demonstrates the network’s strong capability
in discriminating distinct writing styles.

More Experimental Results. As shown in Table 5, this two-stage approach consistently outperforms
direct fine-tuning across different data settings. Across 1000 to 3000 tokens of training data, which can be
fairly regarded as low-resource settings for LLM style transfer, our method shows improved language modeling
performance, mirroring the benefits we observed in chess with increasing numbers of games. Furthermore,
Table 9 shows the prototype matching results for new authors using 2000 training tokens. For each author,
we list their top-2 matched prototypes and corresponding weights, alongside the language modeling loss
with and without prototype initialization. The matches reveal interpretable stylistic connections that often
align with historical and literary contexts. For instance, Herbert Strang and Richard Stead, who wrote
adventure stories for young readers, is matched with Robert Louis Stevenson (57.2%) and Anthony Hope
(42.8%). This pairing is particularly apt as Stevenson’s adventure novels (like "Treasure Island") and Hope’s
romantic adventures (like "The Prisoner of Zenda") closely align with the literary style and target audience of
Herbert Strang and Richard Stead. The corresponding improvement in language modeling loss (from 2.5114
to 2.4885) quantitatively validates this stylistic matching.
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Figure 8: t-SNE visualization of author embeddings. Prototype authors are shown as dots, while new authors
(labeled) are positioned based on their weighted combinations of prototype embeddings. Thicker arrows
indicate stronger prototype influences.

20



Table 9: Prototype Matching Results with 2000 Training Tokens.
New Author w/o Proto w/ Proto Matched Prototypes Weights

George O. Smith 2.7725 2.7581 Richard Harding Davis, Jack London 0.540, 0.460
John D. Sedding 2.7847 2.7652 John Ruskin, Mrs. Humphry Ward 0.618, 0.382
Franz Oppenheimer 2.6181 2.6307 H. G. Wells, Upton Sinclair 0.544, 0.456
Virginia Tracy 2.9959 2.9599 Mrs. Humphry Ward, Edith Wharton 0.622, 0.377
Henry C. Merwin 2.4606 2.4401 William Dean Howells, Grant Allen 0.509, 0.490
Henry James Forman 2.7958 2.7781 Eugène Sue, Mór Jókai 0.556, 0.444
William H. Hamby 2.7050 2.6828 Emerson Hough, Allen Chapman 0.601, 0.399
A Pakeha Maori 2.6287 2.6290 Grant Allen, Hilaire Belloc 0.674, 0.326
Ernest Govett 2.5229 2.5238 John Ruskin, Richard F. Burton 0.826, 0.174
Vivia Hemphill 3.0065 2.9972 Bret Harte, Charles King 0.546, 0.454
Arthur Henry Chamberlain 2.6130 2.6210 Mór Jókai, Hilaire Belloc 0.509, 0.491
Samuel T. Pickard 2.5931 2.5971 Laura E. Richards, Oliver Optic 0.689, 0.310
Ruby K. Polkinghorne et al. 2.5960 2.5691 August Strindberg, Angela Brazil 0.590, 0.410
Thomas Smith 2.6182 2.6006 The Chautauquan LSC, Sir Walter Scott 0.572, 0.428
William Q. Judge 2.7304 2.7389 Upton Sinclair, Grant Allen 0.534, 0.465
Edith A. Browne 2.5726 2.5413 Grant Allen, Mór Jókai 0.669, 0.331
Donald Allen Wollheim 2.6725 2.6612 Jack London, Hamlin Garland 0.502, 0.497
Susan Carleton Jones 2.7170 2.6796 Rudyard Kipling, Edmund Yates 0.645, 0.355
Wallace Irwin 3.8899 3.8506 H. G. Wells, Carolyn Wells 0.507, 0.493
Hector MacQuarrie 2.7740 2.7712 William Le Queux, Hilaire Belloc 0.567, 0.433
S. Pérez Triana 2.7608 2.7751 Hilaire Belloc, Grant Allen 0.554, 0.446
François-Joseph Fétis 2.4629 2.4748 John Ruskin, William Dean Howells 0.506, 0.493
Herbert Strang and Richard Stead 2.5114 2.4885 Robert Louis Stevenson, Anthony Hope 0.572, 0.428
Matt Crim 2.4610 2.4246 Robert W. Chambers, Hamlin Garland 0.617, 0.383
William Chauncey Bartlett 3.1245 3.0846 Rudyard Kipling, Charles G. D. Roberts 0.581, 0.418
David Blyth Hanna 2.9310 2.9009 Anthony Hope, Mrs. Humphry Ward 0.562, 0.438
Edith Elise Cowper 2.9251 2.9086 Anthony Hope, L. T. Meade 0.504, 0.496
Ray Bradbury 3.1877 3.1587 Emerson Hough, August Strindberg 0.665, 0.335
Mary Elizabeth Hall 2.5879 2.5707 Margaret Vandercook, Grant Allen 0.513, 0.487
Dutton Payne 3.1498 3.1341 Laura E. Richards, James Grant 0.615, 0.385
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