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Algorithmic risk assessments are being deployed in an increasingly broad spectrum of domains including
banking, medicine, and law enforcement. However, there is widespread concern about their fairness and
trustworthiness, and people are also known to display algorithm aversion, preferring human assessments even
when they are quantitatively worse. Thus, how does the framing of who made an assessment affect how people
perceive its fairness? We investigate whether individual algorithmic assessments are perceived to be more or
less accurate, fair, and interpretable than identical human assessments, and explore how these perceptions
change when assessments are obviously biased against a subgroup. To this end, we conducted an online
experiment that manipulated how biased risk assessments are in a loan repayment task, and reported the
assessments as being made either by a statistical model or a human analyst. We find that predictions made by
the model are consistently perceived as less fair and less interpretable than those made by the analyst despite
being identical. Furthermore, biased predictive errors were more likely to widen this perception gap, with
the algorithm being judged even more harshly for making a biased mistake. Our results illustrate that who
makes risk assessments can influence perceptions of how acceptable those assessments are — even if they are
identically accurate and identically biased against subgroups. Additional work is needed to determine whether
and how decision aids should be presented to stakeholders so that the inherent fairness and interpretability of
their recommendations, rather than their framing, determines how they are perceived.
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1 INTRODUCTION

Advances in algorithmic systems could help bring about positive societal change, but their use as
decision aids has sparked concerns about the fairness and trustworthiness of automated assessments.
On the one hand, algorithmic predictions show promise in informing domestic violence arraignment
decisions [13], Alzheimer’s Disease risk assessments [21], and credit risk assessments via models
that help determine the likelihood of loan defaults [66, 74]. On the other hand, a large body of

Authors’ addresses: Lillio Mok, lillio@cs.toronto.edu, University of Toronto, Toronto, Ontario, Canada; Sasha Nanda,
sasha.nanda@mail.utoronto.ca, University of Toronto, Toronto, Ontario, Canada; Ashton Anderson, ashton@cs.toronto.edu,
University of Toronto, Toronto, Ontario, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2573-0142/2023/10-ART309 $15.00

https://doi.org/10.1145/3610100

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 309. Publication date: October 2023.



HTTPS://ORCID.ORG/0000-0001-5541-2481
HTTPS://ORCID.ORG/0009-0005-2182-1486
HTTPS://ORCID.ORG/0000-0003-3089-6883
https://doi.org/10.1145/3610100
https://orcid.org/0000-0001-5541-2481
https://orcid.org/0009-0005-2182-1486
https://orcid.org/0000-0003-3089-6883
https://doi.org/10.1145/3610100

309:2 Lillio Mok, Sasha Nanda, and Ashton Anderson

literature has examined many shortcomings of algorithmic systems in terms of how they can
exacerbate biases and fail to engender trust [43-45, 47, 57, 78, 79, 89, 95, 102].

As a result, recent work has investigated how people perceive the opportunities and risks of algo-
rithmic predictions. In terms of the benefits provided by algorithmic predictions for computation-
intensive tasks [1, 13, 85], people are averse to algorithmic advice even when it offers substantial
performance improvements [33, 34, 53], although they occasionally over-rely on algorithms for
quantitative tasks requiring expertise [49, 70]. In terms of societal risks, people are often concerned
with the fairness and interpretability of algorithmic systems [16, 63, 64, 67, 75, 84, 89], although
these perceptions too are often malleable [89] and misaligned [63, 64] with quantitative notions of
fairness [72, 102]. These tensions between varying, often-misaligned perceptions of algorithms’
performance and their societal desirability are especially salient when they are used to assess
risk in high-stakes situations, such as criminal justice [43, 56], healthcare allocation [78], and
creditworthiness [44]. Understanding how people perceive algorithmic assessments is therefore a
key step towards ensuring productive, fair, and beneficial human-AI decision-making.

To what extent are assessments perceived differently based on the agent — algorithm or human -
to whom they are attributed? Unfilled gaps remain in the literature on this question. Research on
aversion often examines how much people behaviorally rely on individual algorithmic predictions
in specific task scenarios, but does not consider attitudinal perceptions of fairness and trustwor-
thiness [33, 34]. Other studies do analyze these stated attitudes, but typically either investigate
general algorithm use without considering individual predictions [5, 63], do not reveal performance
information to participants [5, 16, 63], or do not manipulate framing algorithmic assessments as
human-made [16, 60, 69].

Thus, it remains unknown whether an algorithm’s perceived societal shortcomings, such
as unfairness, depend on the individual assessments it makes compared to identical human
assessments. Without direct comparisons of identical assessments from humans and algorithms
alongside performance information, it is difficult to understand if algorithmic predictions are
considered unusable for e.g. humor detection [22] because people think that algorithms inherently
should not be used for the task. Instead, people may avoid algorithms only because they speculate
that algorithms would fail to achieve identical, human-like performance. We therefore seek to fill
this gap in the present work. Our central research question is: (RQ1) Are algorithmic assessments
perceived to be more or less accurate, fair, and interpretable than identical human assessments? In other
words, we aim to compare how quantitatively-equivalent assessments are perceived depending
only on whether an algorithm or human is thought to have made them.

Beyond how a risk assessment is being made, people are also known to react differently depending
on what assessments are being made [33, 106]. This latter question has become increasingly salient
with revelations of systematic social inequities in the outcomes of algorithms used in high-stake
scenarios [20, 24, 78]. In addition to problematic algorithms (c.f. [107]), the data generated by
people [51, 81] and communities [79] used to train these algorithms often contribute towards
unjust outcomes that may harm various disadvantaged subgroups. However, the role that biased
outcomes play in affecting how people perceive different types of predictor, algorithm or human,
remains unclear. To investigate this, we pose a secondary research question: (RQ2) To what extent
do predictive biases impact the difference in how people evaluate algorithmic and human assessments?

To address these research questions, we conducted an online 2 X 2 factorial experiment in
which we asked participants to evaluate loan repayment risk assessments. Participants were shown
the profiles of individual loan applicants and risk assessments that were attributed either to an
algorithmic or a human predictor (first factor). These assessments were further either unbiased
or biased against female applicants (second factor). Between these 4 conditions, participants saw
otherwise identical loan applicant scenarios with identical outcomes. For each of the individual
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loan applicants they considered, we asked participants to evaluate whether the predictor was
accurate, fair, interpretable, and trustworthy in real life. Participants were also asked at the end of
the experiment for their perceptions of the risk assessor after seeing all the loan applicants.

Summary of results. Across our study, we find that algorithmic risk assessments were systemat-
ically perceived to be less accurate, fair, and interpretable than identical assessments made by a
human. These effects occurred as soon as participants saw a single erroneous assessment, and were
amplified when errors arose as a result of systematic biases against disadvantaged subgroups. In
comparison, participants evaluated assessments from a biased human and an unbiased algorithm
similarly. In their open-ended responses to our questions, participants were also substantially
more likely to praise the human than the algorithm for what they thought to be fair and accurate
predictions; conversely, participants also expressed more apprehension over an algorithm they
perceived as unfair than a human assessor.

Our study thus contributes causal evidence that different agents making identical predictions
in identical circumstances can yield drastically different perceptions of how just the prediction is.
This complements existing work on whether any use at all of algorithmic decision aids in various
high-stakes domains is thought to be acceptable without performance information [5, 63]. Our
results suggest that people perceive algorithms as unsuitable for certain tasks not only because
the lack of this information leads them to speculate algorithms as yielding less accurate and less
fair results than humans. Instead, people appear to place substantial emphasis on the algorithmic
assessor itself even when its outcomes are identical to a human’s. This provides support for the use
of frameworks that do not focus only on outcomes, like procedural justice [65, 68, 92], to explain
how people evaluate the suitability of an algorithm for making risk assessments.

2 BACKGROUND

Our work draws from two bodies of existing research on how people perceive algorithmic predic-
tions. Firstly, the literature on algorithm aversion suggests that, depending on how quantitative and
socially high-stakes predictive tasks are, people are more likely to place faith in human predictions
over those made by algorithms. Secondly, we also consider the literature on how algorithms are
evaluated for fairness and interpretability, particularly through the lens of observer perceptions.
We then apply insights from this existing work to the domain of algorithmic risk assessments,
which pervasively involve quantitative computation and are often used to guide socially impactful
decisions.

Algorithm Aversion. There are many tasks at which algorithms have objectively better perfor-
mance than humans, who have numerous cognitive biases [46] and difficulties recalling simple
quantities [42, 73]. Technological developments across many fields requiring complex calculations,
ranging from criminal justice [13, 56] to healthcare [21], are therefore often coupled to algorithmic
improvements [62, 85]. Despite this, there is a growing body of work indicating that people are
averse to the use of algorithms, even in heavily quantitative, objective scenarios in which they
excel [6, 30, 33, 34, 90]. One explanation is that people are more sensitive to flaws in algorithmic
predictions and thus will asymmetrically prefer humans when seeing machine-made errors [33],
especially when these errors are made early [76]. Furthermore, people are less averse to algorithms
when they are perceived as autonomous, accurate, inherently capable, or human-trained [53].
Similarly, others find that perceptions of potential algorithmic risks, such as unfairness and privacy
concerns, could hinder otherwise positive enthusiasm about adopting algorithms [5]. Recent evi-
dence also suggests that the level of expertise attributed to decision-makers could further determine
whether people are averse to or appreciate algorithmic decisions [47, 49], especially because people
calibrate their reliance on algorithms by inferring their expertise in the task at hand [110].
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Algorithm aversion may also depend on characteristics of the task: they are thought to be more
reliable for objective tasks, whereas subjective tasks require humanness that algorithms do not
possess [22]. For instance, algorithmic advice about song popularity is more acceptable than advice
about specialist, scientific opinion [70], whereas algorithms are less trusted to detect humor and
to plan weddings [22]. In the realm of recommendations, people are indifferent between news
articles automatically recommended based on personal consumption patterns and those curated by
journalists [99]. In some mathematical situations, people follow algorithmic suggestions even if
they are incorrect [96]. Beyond tasks that involve only singular agents, people also varyingly avoid
algorithms in multi-agent settings. Under cooperative circumstances, people’s receptiveness of
e.g. conversational agents depends on how anthropomorphically and competently they are repre-
sented [52, 55]. In adversarial contexts, people evade algorithms both when they provides beneficial
advice against an adversarial human [39] and when they are themselves the adversary [38].

Encouraging the adoption of algorithms in situations where they objectively outperform humans
is thus essential to obtaining better aggregate outcomes [85]. Both the framing of the decision-maker,
via its expertise, human involvement, and autonomy [49, 53, 110], and the framing of the task, via
its objectivity and risks [5, 22], are likely to change whether people trust algorithmic decisions.
Furthermore, algorithms are more acceptable when people are afforded more control [34], given
information about previous algorithm use [2], and shown how algorithms learn over time [11].
This body of literature on algorithm aversion and appreciation thus highlights the myriad factors
influencing the adoption of algorithms for tasks in which they outperform humans.

Fairness. Although research on algorithm aversion reveals the complex reasoning behind adopting
algorithms, it typically focuses on situations in which performance is the key desideratum. In
contrast, many other factors determine whether decisions are desirable, such as whether they
are fair, explainable, and just [16, 44, 60, 106]. From a theoretical standpoint, many mathematical
metrics allow for algorithmic fairness to be directly quantified [72, 102]. For example, an algorithm
may be considered fair only if its predictions achieve statistical parity across subgroups [24], if
(dis)similar individuals are given (dis)similar outcomes [36], or if decisions are insensitive to minor
counterfactual data changes [59]. Indeed, fairness problems may also be inherent to the data from
which algorithms are developed, be the data social [79], lingual [17], or visual [20], and be it used
for healthcare [78] or criminal justice [56, 57]. Thus, meeting appropriate fairness metrics is often
thought to be a necessary (although insufficient) requirement for adopting algorithms. On the one
hand, algorithms and data should withstand litmus tests against these metrics in theoretical and
laboratory settings (c.f. [24, 56, 102]); on the other, models deployed in the field need to be audited
in situ for fairness [20, 78].

Nonetheless, empirical research has shown that theoretical fairness definitions are often incon-
sistent both with each other and with human perceptions [24, 25, 58, 64] — akin to how performance
and perceived performance are misaligned in the algorithm aversion literature. For example, per-
ceptions of different fairness metrics often depend on whether protected attributes are salient [89].
People also rate algorithms as more fair when outcomes favor themselves, even in the presence of
obvious biases against demographic groups [106]. Mathematical metrics could further entirely miss
altruistic values that are difficult to quantify [64]. It thus stands to reason that combining fairness
metrics with human intervention may reconcile inconsistencies with both. And yet, results suggest
that human-plus-algorithm processes may not only fail to correct, but even exacerbate, unfair and
inaccurate decisions [43-45]. Considering these results alongside algorithm aversion [5], one may
therefore suspect that any use of algorithms at all may be considered unfair in certain scenarios.
Evidence for this has been found in managerial tasks [63], in which the use of an algorithm, let
alone its outcomes, for tasks involving more human-like qualities is considered less fair.
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These findings illustrate the need to incorporate other understandings of fairness that do not
focus solely on outcomes, such as procedural justice [65], philosophical accounts [15], and judicial
discourse [8]. For one, the amount of control that humans have across a decision-making procedure
plays a key part in determining whether that procedure is socially acceptable [23, 34, 65]. Similarly,
other procedural characteristics such as democratic representation and outcome alignment with
constituent preferences are desiderata for legitimizing platform governance [80, 97], as is the ability
for stakeholders to contest decisions [3, 71].

A critical aspect of procedurally-just algorithmic decision-making is the extent to which algo-
rithms can be made interpretable [65, 109], which expands on the idea that outcomes alone do not
determine the suitability of a decision maker (c.f. [16, 65]). Empirically, interpretability is often
studied by manipulating the complexity and black-box nature of algorithms [83], showing the
features used visually [60] or numerically [111], or by providing post hoc explanations of algo-
rithmic decisions [16, 61, 75, 88, 105]. However, despite increasing trust placed in algorithms via
prediction calibration (i.e. deferring to an algorithm’s suggestion [60, 111]), improved algorith-
mic interpretability leads neither to consistently improved performance in human-plus-algorithm
settings [60, 69, 83, 111] nor better evaluations of an algorithm’s correctness [83, 84]. Nonethe-
less, uninterpretable predictions are still perceived to be less understandable [67], just [16], and
potentially even less fair [35].

Algorithmic Risk Assessment. Given the myriad factors influencing how acceptable algorithms
are perceived to be, many of these phenomena are closely related to the use of algorithms in
making high-stakes assessments of risk. For instance, automated risk assessment tools have been
increasingly considered for adoption in the realm of criminal justice [28, 29, 31], leading to studies
arguing variably that these systems may harm [4] or improve [40, 56] the fairness of judicial
decisions. In healthcare, quantifying patient risk also plays a critical role in the distribution of
treatment resources [9, 48, 103], algorithms for which are also known to exacerbate social inequities
in existing care management practices [78, 104]. Financially, computational risk estimation is used
pervasively to evaluate creditworthiness and allocate assets [27, 91], with scholars positing that
issues with algorithmic justice can be addressed through recourse [100, 102].

Three aspects of risk assessments make it an area in which algorithm aversion and fairness con-
cerns are particularly relevant. Firstly, risk measurement is inherently a quantitative, computation-
intensive task that has traditionally been regarded as yielding objectively correct or incorrect
outcomes for individual predictions [43, 44]. It therefore shares many characteristics with similarly
quantitative and computational forecasting tasks, such as academic success prediction, in which
algorithm-averse behaviors have been observed [33, 34]. Secondly, risk assessments are often used
in situations like criminal justice where their aggregated predictions have the potential for serious
societal implications, such as unfairness towards ethnic minorities [4]. Questions of fairness and
justice are therefore especially salient because algorithmic decision aids can transform latent social
inequities into tangible harms by assessing risk unfairly [56, 78, 104]. In turn, one may thus expect
observers to be averse to risk assessments made by algorithms lacking the procedural transparency
and accountability to contestation that humans have [3, 65, 71]. Thirdly, risk assessments in vastly
different domains share a fundamental mechanism, i.e. computationally quantifying risk from
historical and possibly biased data, and are ecologically pervasive [43]. This makes them an ideal
object of study at the intersection of algorithm aversion and fairness.

Relation to this work. Taken together, the bodies of research on algorithm aversion, fairness,
and interpretability illustrate the importance of empirically understanding human perceptions of
algorithms, beyond the objective measurement of computational performance or the adherence
to desirable mathematical properties. These perceptions are notably relevant for algorithmic risk
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assessments, the high-stakes, computational nature of which lends to distinct concerns about
their acceptability as aids for societal decisions. We thus situate our research question within key
characteristics of the existing empirical work below.

(1) Who Predicts vs. What and Why Assessments are Made. The literature on algorithm
aversion and appreciation is broadly concerned with how people compare predictions from
human and algorithmic agents by manipulating who makes the prediction [22, 33, 34, 53, 70].
In contrast, the work on fairness and interpretability is focused on different mathematical
or perceived aspects of algorithms and datasets, i.e. what or why decisions are made [44, 56,
60, 60, 69, 72, 78, 83, 84, 102, 106, 111]. Our work compares how people perceive fairness and
interpretability depending on whether assessments are made by a human or an algorithm.

(2) Performance vs. Actions vs. Perceptions. Research on both algorithm aversion and fairness
measures outcomes in terms of objective performance (such as accuracy), participant actions
(such as choice calibration), and subjective perceptions (such as stated fairness and trust).
The former two categories are often studied together with monetary incentives, and typically
measure how well human-plus-algorithm predictions agree with known ground truths [33, 34,
43, 44, 83]. On the other hand, perceptions are self reported. In work on algorithm aversion,
measured perceptions are generally of confidence, suitability, performance, and preferences [5,
22, 33, 34, 99], whereas in fairness and interpretability research measured perceptions are
unsurprisingly of fairness and interpretability themselves [16, 63, 64, 75, 89], as well as related
constructs like trust [67], consistency [84], and justice [16]. Our work crosses both groups
by measuring perceptions of performance, trust, fairness, and interpretability with attention
incentives.

(3) Concrete Situations vs. Generic Use. Both bodies of research typically tackle two types of
questions:

(a) How are algorithms evaluated for individual, concrete predictions they make under specific
situations with performance information? To address this question experimentally, studies
often use tasks such as “The relevant features are xi, xa, ..., X, from which the algorithm
predicts Y” (algorithm aversion, c.f. [33, 34]), or “Defendant A is predicted to have Y% flight
risk based on their features x, x, ..., x,” (fairness, c.f. [43, 44]). Our work studies this category
of algorithm use.

Should algorithms be used at all to make predictions in broad scenarios without performance

information? To address this question, task templates often look like “An [Al/human editor]

decides about fitness recommendations” [5] or “Jayln works at the customer service center.

Based on past call recordings, the (algorithm/manager) evaluates his performance” [63].

Because these tasks are used to study whether algorithms should be used at all, the actual

features considered, concrete predictions made, and performance achieved by the model or

human are typically not revealed.

b

~

In summary, despite the rich body of empirical findings on algorithm aversion and fairness, we
find little work that compares perceptions of identical predictions in identical risk assessment
scenarios depending on who (i.e. algorithm or human) makes those predictions. Although this is
closely related to two studies on the perceived fairness of general algorithmic use [5, 63], neither
measures how people comparatively perceive fairness in identical, actual predictions made by
algorithms versus humans. Without revealing the individual outcomes achieved and the assessors’
performance information to study participants, one cannot tell if participants find algorithms to be
more unfair because they have worse speculated performance or if they are thought to be inherently
less fair than humans. Thus, our research question qualifies the extent to which the framing of
risk assessments as natural or artificial can alter perceptions of their predicted outcomes in the
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Applicant 909, Jessica, is a 53 year-old female. Applicant 909, Jessica, is a 53 year-old female.

She is applying for a loan worth 7119 USD, with each installment constituting 3% of her She is applying for a loan worth 7119 USD, with each installment constituting 3% of her
monthly income. Jessica has been employed for 1-4 years, and had missed some past monthly income. Jessica has been employed for 1-4 years, and had missed some past
loan payment deadlines. She has less than 1000 USD in various savings and no checking loan payment deadlines. She has less than 1000 USD in various savings and no checking
account at this bank. account at this bank.

The credit analyst thinks that Jessica is 1.5% likely to pay back her loan. Practice Feedback

The credit analyst thought that Jessica was 1.5% likely to pay back her loan.

What are the chances the credit analyst got their prediction right? (REMEMBER: you Jessica eventually DID NOT pay back her loan.
may earn up to a $1.50 bonus for answering to the best of your ability!)

The credit analyst was off by 1.5% percentage points.
analyst got it WRONG analyst got it RIGHT
1 2 5

3

Fig. 1. Left (a): Example task on first page showing a loan applicant profile and a prediction framed as being
either from a statistical model or an analyst. Study participants are asked to guess the prediction’s accuracy.
Right (b): Feedback about the prediction’s actual performance is then shown to participants in the second
page, along with in-task Likert scale questions on perceived fairness, interpretability, and real-world usability
(Section 3.4). Each task consists of these two pages.

presence of performance information. This would, in turn, inform the design of better decision aid
systems by identifying the factors that people consider when determining whether algorithmic
systems are desirable and just.

3 METHOD

Our goal is to investigate the differences in how people perceive human and algorithmic predictors
when they make the same risk assessment for the same scenarios. To address our research questions,
we conduct a between-subjects, 2 X 2 factorial online experiment on Amazon Mechanical Turk
(n = 179) in which participants are shown identical risk assessments that are framed as being made
either by an algorithm or a human. In this section, we outline key aspects of our method: our task
selection and construction, experimental manipulation, survey design, and outcomes measured.

3.1 Task Selection and Statistical Model

As with much of the literature presented in Section 2, our work is concerned with human- or
machine-made predictions in response to a well-defined scenario with an objective, quantitative
outcome. Following existing empirical work, we study risk assessment scenarios [24, 43-45, 56, 89,
102], which we operationalize by asking participants to respond to a loan compliance prediction
task [44, 89]. Specifically, the prediction task asks: given a set of features about a loan applicant,
what are the chances that they will pay back the loan on time? To this end, we use the German Credit
Dataset [10, 102, 108], which describes one thousand deidentified loan applicants and whether they
eventually repaid their loan'. This task is especially well-suited to our research question because its
outcomes can be easily manipulated for gender biases (see Section 3.2) and also evaluated intuitively
both on performance and fairness (see Section 3.4).

Data. We make two further modifications to this dataset. We first use an updated version that
corrects for potential labelling errors in the previous dataset from existing work?. We then artificially
de-bias the outcomes for gender by randomly reassigning binary gender labels to each row. In other

!https://archive.ics.uci.edu/ml/datasets/statlog +(german+credit+data)
Zhttps://archive.ics.uci.edu/ml/datasets/South+German+Credit+%28UPDATE%29
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words, a coin is flipped for every participant that overwrites the existing gender label with a woman
if it lands on a heads, and with a man if it lands on a tails. Loan applicants are therefore equally
likely to be men or women independent of their other features. This is for multiple reasons. Firstly,
this removes potential confounds in our experiment in which participants may react differently
to loan scenarios based on an interaction between the predictor type (human versus algorithm)
and gender-biased ground truths (e.g. that a certain gender pays loans back less frequently due to
systemic social inequities, c.f. [78, 79]). Secondly, this allows us to vary the gender biases in our
predictive agent’s outputs for our research question, with less interference from obvious gender
biases inherent to the dataset. Thirdly, this overcomes gender labelling errors in the original dataset®.
In the altered dataset, there are neither gender differences in the outcome (loan compliance; p > 0.05
with unpaired t-tests) nor features (e.g. loan duration, loan amount, employment duration, checking
account status, credit history, or age; all p > 0.05).

Statistical Model. We then trained gradient boosted trees [41] to predict loan repayment on the
modified dataset, while excluding demographic variables (age, gender, and marital status) as is
standard in the literature [44]. We evaluate the model’s performance using the Brier score [44],
for which we obtain a score of 0.17 on a 20% hold-out dataset. To reaffirm the steps we took to
minimize gender biases in the dataset, we also obtain a disparate impact ratio of 1.01, an average
odds difference of 0.005, and an equal opportunity difference of 0.005 across the entire updated
dataset [10, 102]. In other words, men and women were equally likely to be given a loan, had
essentially the same true and false positive rates, and specifically had less than a percentage
point’s difference in true positive rates. Thus, predictions for loan compliance are virtually identical
between the genders in the de-biased dataset.

We then construct loan applicant profiles using the variables in the dataset, actual loan repayment
outcome, and model-predicted outcomes. We select age, gender, and 5 of the top 10 most predictive
features from our model that are easy to fit into a short text description. These include the loan
amount, percentage of income taken, employment status, credit history, and known bank accounts
open. Following similar work on racial bias [14, 37, 98], we further generate obviously gendered
names for the applicants by selecting the most popular and heavily gender-skewed names from a
USA national names database’. An example applicant profile is shown in Figure 1.

Reintroducing Gender Biases to Predictions. We construct two versions of the model built on
the gender de-biased data. We first create a gender-biased version by forcing negative predictions for
all positive instances of female applicants. In other words, every female applicant who eventually
paid back their loan is predicted as having a high risk of nonpayment. We set false negatives to
have a mean predicted 5% chance of repayment with up to 2% noise to mimic natural predictions.
Although financial institutions are often concerned with minimizing false positives, individuals
are more concerned with fewer false negatives or overly-harsh predictions in loan scenarios [43].

3See link to updated dataset in previous footnote. Although this may impact previous work [102], our experiment by design
requires ground truths with minimal gender biases and therefore uses artificial gender labels. We discuss the use of binary
gender labels in Section 5.

4This score is equivalent to mean squared error between predicted probabilities and a binary actual outcome, and ranges
from 0 to 1. For the model, we used the default settings available on the scikit-learn implementation. Note that our work is
concerned more about resulting perceptions rather than developing novel, cutting-edge models; see e.g. [82] instead for
improving predictive performance.

Shttps://www.ssa.gov/oact/babynames/limits.html; names are considered gender-skewed if more than 85% of people born
with that name after 1970 fell into one gender. To avoid confounding from names that are ambiguously associated with
ethnic minorities, we only consider the most popular names and check them against names in the literature on racial
bias [14, 37, 98]. The exact names used are Amanda, Elizabeth, Emily, Jennifer, Sarah, Daniel, David, James, Joshua, and
Matthew; one of Ashley, Jessica, Christopher, and Michael is randomly selected in the training example in Figure 1.
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Applicant # 1 2 3 4 5 6 7 8 9 10
Sex M M M M M F F F F F
Repaid Loan  Yes Yes Yes Yes No Yes Yes Yes Yes No
Predictions:

Unbiased TP TP FN FN TN TP TP FN FN TN
Biased TP TP TP TP TN FN FN FN FN TN
Predictor:

Human Analyst " " " ! ! " " " "
Algorithm Model " " " " " " " " "

Table 1. Experimental manipulations across the human vs. algorithm factor and the unbiased vs. biased factor.
Blue cells represent correct predictions, i.e. true positives and negatives; red cells represent false negatives.
Each participant sees the same 10 loan applicants in a randomized order.

Therefore, predictions with poor true positive parity and disfavoring (as opposed to favoring)
certain subgroups should be perceived as less fair (c.f. [43, 78]).

We then construct an unbiased version with an identical error rate as the biased version. For
the unbiased predictions, we take the same number of false negatives as the biased version and
distribute them uniformly over the positive examples across both genders. In other words, both men
and women applicants who paid their loans back are equally likely to be allocated a false negative.
Empirically, we find that the equal opportunity difference to be 0.04 vs. 0.93 in the unbiased and
biased versions respectively, indicating an extreme worsening of the true positive rate for women
when they are the only recipients of artificial false negatives - i.e., that they would be incorrectly
rejected for a loan® [10, 102]. By using our updated dataset, we can attribute this gender inequality
to the predictions made as opposed to biases inherent to the original dataset — without altering the
other variables in the dataset [102].

3.2 Experimental Manipulation

Our study incorporates a 2 2 factorial experimental design that manipulates the agent to whom risk
assessments are attributed (i.e. a human versus an algorithm) and the extent to which predictions
made are biased against protected subgroups (i.e. women, in our case). Each factor modifies the
task described in Section 3.1 and Figure 1 as follows:

e Assessor Type: Human Credit Analyst vs. Statistical Model. As the main manipulation
for answering our research questions, the predictor type factor replaces all occurrences of the
predicting agent with either “credit analyst” or “statistical model” across our entire experiment.
The pronoun we present for each predictor is respectively “they” and “it”.

e Predictive Biases: Unbiased vs. Gender-Biased. Aside from the tutorial in our experiment, all
incentivized tasks will show predictions that are either gender-unbiased or gender-biased using
the method described in Section 3.1, as shown in Table 1. Specifically, there are two levels:

(1) Predictions are unbiased: loan assessments for both men and women are equally likely to be
false negatives.

%We further validate this by measuring the calibration difference between men and women, which is considered a desideratum
for risk assessment tools [12, 26, 40]. We group repayment probabilities from the unbiased model into 5 bins and count
the people who actually repaid their loans per bin. We find that the unbiased model is empirically well-calibrated for
both groups with a mean calibration difference of 0.007 across the bins. In contrast, the biased model is extremely poorly
calibrated with all females receiving low probability of repayment, therefore yielding a calibration difference of -0.463 in
the first of two probability bins. No female fell in the upper probability bin.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 309. Publication date: October 2023.



309:10 Lillio Mok, Sasha Nanda, and Ashton Anderson
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Fig. 2. Survey flow and experimental design.

(2) Predictions are biased: all loan assessments for women and no loan assessments for men are
false negatives.

A summary of these factors is shown in Table 1. Besides our manipulations, every participant sees
identical loan applicants shuffled into a random order. Only the predictor and its risk assessment
varies between conditions.

3.3 Experiment Design and Workflow

Having constructed various loan applicant profiles for each of our experimental conditions, we
now outline the rest of our online experiment implemented through Qualtrics shown in Figure 2.
There are three phases in our design: an introduction and training example, a main experiment
loop, and a post-task set of questions with debrief.

Introduction, training example, incentives. Participants are told that they will see a series of
loan applicants receiving credit at a bank, and then introduced to the risk predictor - either a credit
analyst or a statistical model — that will assess the likelihood of loan repayment. They are also
informed that they will be tasked with evaluating the assessor.

Participants are then given an overview of the task plus a training example, which we randomly
select from the four best-predicted applicants by Brier score (applicants are either male or female
and either will or will not pay their loans back). One such example is shown in Figure 1a, which
contains both an applicant profile plus a risk assessment from the predictor. We do not introduce
any predictive errors in the training task. Participants are then asked to guess the predictor’s
accuracy in the example, after which feedback on the predictor’s actual performance is shown
(Figure 1b). They are prompted to respond to in-task evaluations on the feedback page, which we
outline in Section 3.4.
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Category  In-Task Question Post-Task Question

Performance What are the chances the [ana- How accurate do you think the [analyst/model]
lyst/model] got [their/its] prediction was at guessing whether people paid their loans

right? back?

Fairness Do you think the [analyst/model]’s pre- How fair do you think the [analyst/model]’s pre-
diction is fair? dictions were?

Interpretability Is the [analyst/model]’s prediction un- How much did you understand the [ana-
derstandable? lyst/model]’s predictions?

Real-life Would you trust the [analyst/model] to  Think about banks you’ve used. Do you think

adoption decide who gets a loan in real life? your bank should employ this [analyst/model]

to approve and reject loan applicants?

Open-ended - Do you have any thoughts about the [ana-
lyst/model] you saw?

Table 2. In-task and post-task questions asked to participants. All answers scored on Likert 5-point scales;
open-ended question was only asked once at the end of the survey with a free-form text box.

After the training example, participants are shown the incentive structure: they can earn up
to an additional $0.75 USD ($1.50) if they are in the top 10% (1%) performing participants, with
total pay determined in Section 3.5. This improves participant attentiveness and data quality
(c.f. [33, 34, 43]), and is evaluated based on their responses to the performance question in every
task in the main loop as depicted in Figure 1a. To continue to the experiment loop, participants
must then answer a comprehension check about the incentives correctly. This helps both response
quality and participant salience of who the risk assessor is, i.e. analyst or model, and the incentives
for answering to the best of their ability [33].

Main experiment loop. The main loop consists of ten “official” tasks (orange box in Figure 2)
identical in format to the training example in Figure 1. For each question, participants are presented
with the risk assessment scenario description, as well as either the statistical model or the credit
analyst’s prediction. They then judge how accurate the risk assessment is by answering the in-task
performance question (Table 2 and Figure 1a), before being shown the ground truth. Finally, they
answer the remaining in-task questions on the feedback page.

To select ten tasks, we choose the four positive applicants and one negative applicant for each
gender with the best Brier scores in Section 3.1, excluding the applicants chosen for the training
example. The individual manipulations are shown in Table 1. Participants in the human condition
will be shown a “credit analyst” making risk assessments, while those in the algorithm condition
will see a “statistical model”. Those seeing an unbiased predictor will receive 2 false negatives for
each gender, while those seeing a biased predictor will see 4 false negatives for women only. The
ordering of applicants is again randomized to reduce anchoring and learning effects.

Post-task questions and debrief. After completing the previous phases, participants are asked a
series of questions to measure outcomes for our research question. A full description is provided
below in Section 3.4. We further ask participants for their voluntary disclosure of their gender, age,
and education status, detailed in Section 3.5. Finally, they are debriefed about the experiment and
told that the data, predictions, and predictor are fictional in line with existing work [106].

3.4 Measured Outcomes

In accordance with our research questions, we measure the extent to which people perceive the risk
assessment predictor as being accurate, fair, interpretable, and trustworthy in real life by adapting
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Factor 1: Predictor Factor 2: Bias
Condition Analyst  Model ‘ Biased Unbiased
Participants 96 84 88 92
Age 442+99 41.9+109 | 44.8+103 41.6+10.4
Years Post-Secondary | 3.3 +1.9 29+1.8 3.1+1.9 3.1+1.8
Is Female 35.4% 57.1% 48.9% 42.4%
USA Residence 100% 100% 100% 100%
HITs Completed >50 >50 >50 >50
HIT Approval 95% 95% 95% 95%

Table 3. Demographics by experimental condition.

questions from existing work [5, 63-65, 84, 106]. Note that, in comparison to the interpretability
of post hoc explanations [61, 105], this notion of interpretability is more closely related to how
models are thought to be understandable based on their transparency [60, 83, 111]. In our case, we
manipulate how the model is framed as human or algorithmic, as opposed to which and how features
are visible. These outcomes are measured across two sets of questions during each (“in-task”) and
after all ("post-task®) of the official tasks. There are thus 10 in-task questions and 1 post-task
question per category, per participant. All questions are coded on 5-point Likert scales; in-task
questions referred to the current task and ground-truth feedback, whereas post-task questions
ask about participants’ overall perceptions. For example, participants answer on a scale of 1 (the
predictor got it wrong) to 5 (the predictor got it right) in response to the in-task performance
question, which is incentivized for attentiveness. These questions are tabulated in Table 2.

3.5 Participants

We recruited 245 participants from MTurk, of which 39 failed the comprehension checks and 27
exited before finishing the experiment. The remaining n = 179 successfully completed the task. We
required participants to be MTurk Masters residing in the USA and with at least a 95% approval
rating over more than 50 HITs. Participants received $2 USD for participating in the experiment plus
up to an additional $1.50 according to the incentive structure in Section 3.3, which we determined
via the length of pilot experiments and the median USA minimum wage. In the final version that
we launched, participants who completed the task took a median of 10 minutes (Q1 of 8 and Q3 of
15 minutes).

Demographics. In addition to restricting our pool to skilled MTurkers from the USA, we also
asked participants to report their gender, age, and years spent in post-secondary education in line
with existing work [63]. We aim, firstly, to help contextualize our studies with respect to participant
demographics that may not be perfectly representative of the broader populace. Secondly, we want
to probe for potential pre-existing attitudes towards algorithms, known to be correlated with age
and education level [5, 70], without anchoring participants on explicit questions about algorithmic
knowledge. The distribution of these demographics across both of our experimental factors are
shown in Table 3.

We note that participant demographics are comparable across our experiment with the exception
of gender in the human-algorithm factor. This appears to be a chance occurrence as our survey
randomizes participants into conditions before any demographics are collected in the debrief. One
may therefore be concerned that our results for the human-algorithm factor may be confounded
by differences in how different genders respond to the questions in Table 2. To check for this, we
test whether self-identified females and males (n = 1 person identified as non-binary) responded
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differently to the in- and post-task questions differently. We find no significant differences between
their responses (p > 0.1 for all questions using bootstrapped Welch tests), suggesting that differences
in the responses for the human-algorithm factor do not arise from underlying gender disparities.
Additionally, we find no noticeable correlational effects between age, years of education, and
participant responses (—0.12 < r < 0.10, p > 0.2 for all questions).

This preliminary analysis illustrates that any significant results in our factorial experiment
are extremely unlikely to arise from participant demographics and pre-existing attitudes towards
algorithms. On the one hand, because we use a between-subject design, participants are equally
likely to be allocated any of the 4 experimental conditions regardless of their attitudes. On the other,
their demographics have no empirical association with how they responded to task questions.

4 RESULTS

We now detail the results obtained from our experiment, which we group into three subsections.
Firstly, we illustrate that risk assessments framed as algorithm-made are systematically judged
more harshly than those framed as human-made, i.e. that there is a human-algorithm perception
gap. Secondly, we show that biased errors play an amplifying role in this relationship by negatively
shifting perceptions to different degrees, depending on the predictor. Finally, we reinforce our
results with a qualitative analysis of the responses to the experiment’s open-ended question.

4.1 Algorithmic Assessments Are Judged More Harshly

To address our primary research question RQ1, we measure the outcomes for the post-task questions
in Table 2 aggregated across participants in the credit analyst and statistical model conditions. For
in-task questions, we take a per-participant average before aggregating responses in each of these
conditions. We then estimate the effect of seeing an algorithmic predictor by normalizing with the
mean and standard deviation of participants who saw a human predictor, which we plot in Figure 3.

We observe that participants who saw a statistical model’s risk assessment were consistently
more likely to judge its predictions negatively than those who saw a human’s risk assessment. The
model condition induced a negative effect across each perceived construct, as shown in Figure 3.
In the post-task questions, participants rated the algorithm as having worse performance as a
whole (p < 0.05,d = —0.270)7, as well as being less fair (p < 0.05,d = —0.329), less interpretable
(p < 0.01,d = —0.407), and less desirable for making real-life decisions (p < 0.01,d = —0.532). The
substantial difference in perceived interpretability is especially surprising, given that we never
manipulated any available information in our loan applicant tasks (Figure 1) even when altering
biases in the risk assessments.

We further find evidence of the human-algorithm perception gap in the in-task questions. Three
questions had significant, negative effects, with participants perceiving the algorithm as less
accurate (p < 0.05,d = —0.408), less fair (p < 0.05,d = —0.318), and less trustworthy in real
life (p < 0.05,d = —0.340). Although it was statistically insignificant (p > 0.05), being shown
algorithmic assessments still had a negative effect on the assessments’ perceived interpretability
(d = —0.306). Thus, our results point consistently towards participants forming a more negative
impression of credit assessments made by an algorithm than those made by a human analyst.

To probe the in-task questions further, we additionally measure how participants’ in-task per-
ceptions change as they see erroneous risk assessments. We aggregate participants’ responses to
each question before the first error (i.e. a false negative predicting they will default on a loan),
between the first and second errors, and so on over all 4 errors in the experiment (see Section 3.2).

"Unless otherwise specified, p-values are derived from comparing bootstrapped Welch ¢ statistics between experimental
conditions [86], across the 4 measured categories of perceptions.
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Estimated Effect of Algorithmic Predictions

Question Placement
Post-Task
In-Task
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Perceptions of Algorithm Relative to Perceptions of Human (o)

Fig. 3. Estimated effect of seeing predictions from a statistical model over a human analyst. Variables are
defined in Table 2, and outcomes normalized so that the human-predictor condition has a standard deviation
of one. Error bars show a 95% bootstrapped confidence interval.

Since the loan applicant ordering is randomized, each interval contained 2 questions in expectation.
Figure 4 illustrates the in-task responses aggregated in this way for the analyst versus model
condition; Figure 7 in Appendix A further splits this by the bias condition. We find perceptions to
be similar in the model and analyst groups before exposure to any errors. The largest negative shift
in perceptions occur universally after participants are exposed to their first error, echoing work
on the importance of first impressions in helping develop trust in intelligent systems [76]. After
the first error, in-task responses then separate over time: perceptions of the algorithmic assessor
trend slightly negatively in comparison to perceptions of the human assessor. Since the order in
which participants observe loan applicants is randomly shuffled across participants, this gap is
unlikely due to artifacts such as learning effects. Instead, these shifts are likely due to seeing the
consecutive errors we imposed on the risk assessments.

4.2 The Amplifying Effect of Erroneous and Biased Predictions

Based on the patterns in Figure 4, we further investigate the extent to which errors lead to shifts in
participant perceptions of the risk assessor. This is further split by the biased-unbiased condition
in Figure 7 in Appendix A. We focus on the effects of the first error for two key reasons. Firstly, all
responses suffered from a systematic drop after the first error, illustrating the gap in participants’
perceptions after they are shown flawed predictions. Secondly, the separation in responses between
the algorithmic predictor and human predictor begins after the first error, suggesting that it plays a
critical role in how participants’ evaluations of the human and the algorithm diverge.

We first compare the responses in Figure 4 before and after the first error, the latter of which
includes responses collected in the same task containing the first error. We find that, before the first
error, there are no statistically-significant differences between how people viewed the algorithmic
and human assessments (p > 0.05, —0.132 < d < —0.034). After the first error, however, effect sizes
grew and became statistically significant. Perceived performance (p < 0.05,d = —0.399), fairness
(p < 0.05,d = —0.339), and real-world trust (p < 0.05,d = —0.353) were all lower for participants
who saw the algorithmic predictor compared to those who saw the human analyst. Although
statistically borderline (p = 0.086), participants also comparatively thought the statistical model
was less understandable than the human after the first error (d = —0.301). This again reinforces the
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Outcomes After Seeing Each Error
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Fig. 4. Average in-task perceived performance, trust, fairness, and interpretability as a function of the number
of errors participants have seen so far. Empirically, participants saw responded to a mean of two questions
per perception category between errors.

findings in Figure 3, and further echoes existing work on how erroneous algorithms may lead to
overly-harsh judgments of their predictions [33].

Does this effect depend on the kinds of errors that algorithmic and human predictors make —
especially those that strongly disfavor certain subgroups? We thus extend our analysis of the first
error to include our secondary RQ2 by considering the biases underlying risk assessments. To this
end, we calculate a before-after delta in the responses for each participant, formally A; = g4 — qp;
for participant i and in-task question q that is answered before (b) or after (a) seeing the first error.
Since participant responses all systematically shifted negatively after the first error in Figure 4, we
expect the deltas to be negative. Figure 5 plots the per-participant deltas, separated by whether they
interacted with a human or algorithmic risk assessor, and whether they were exposed to unbiased
or biased errors.

We find that exposure to biased false-negatives (and therefore biased true-positives, see Table 1)
led to a statistically-significant widening of the gap between human-made and algorithm-made
predictions for every question. The algorithm is punished substantially more for making a biased
error through its perceived performance (p < 0.01,d = —0.709), fairness (p < 0.05,d = —0.430),
interpretability (p < 0.05,d = —0.846), and desirability for real-life use (p < 0.05,d = —0.464).
In comparison, when participants saw an unbiased error, there were no statistically-significant
differences between perceptions of the human and the algorithmic predictor (p > 0.05 with
—0.350 < d < —0.108). This effect suggests that the human-algorithm perception gap is closely tied
to the biases in their predictive errors. The algorithmic predictor is judged much more harshly
than the human predictor when both make the same biased mistakes, whereas judgment is less
asymmetric when they make unbiased mistakes.

In tandem with our findings in Section 4.1, these results again highlight the differences in how
people perceive human-made and algorithm-made risk assessments. Algorithmic predictions are
evaluated more harshly than identical ones made by humans under the same circumstances and
with the same information. When algorithmic predictions are erroneous, they are punished even
more for displaying underlying biases against demographic subgroups — whereas participants
judge humans less harshly for making the same biased mistakes. In fact, we find that a biased
human and an unbiased algorithm are perceived comparably across all 4 post-task questions in
Table 2 (p > 0.05,-0.174 < d < 0.151). We even observe that a biased human appears to be
perceived as slightly more acceptable than an unbiased human across all 4 constructs after seeing
the first error (0.132 < d < 0.340), although this is statistically borderline (0.02 < p < 0.22). These

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW2, Article 309. Publication date: October 2023.



309:16 Lillio Mok, Sasha Nanda, and Ashton Anderson

42 Shift in Responses After First Error

8 Predictor
0.0 1 R R

£ Analyst

9]

=< _05- 1 i i Model

S

S 10 ~ 1 1

)

o 15

o ~151 ] ] ]

(%]

c

O 2.0 1 1 1

$ Unbiased Biased Unbiased Biased Unbiased Biased Unbiased Biased

o

Performance Evaluation Perceived Fairness Perceived Interpretability Desire for Adoption

Fig. 5. The shift in responses to in-task questions after seeing a single error, split by the different conditions
to which participants are randomized. A negative shift indicates that participants viewed the risk assessments
more harshly after the first error.

findings potentially suggest that human assessors are perhaps expected to make biased mistakes;
we speculate on potential implications below in Section 5.

4.3 Open-Ended Responses

We further explore whether the gap in perceptions of humans and algorithms is reflected in
responses to our open-ended question in Table 2. To this end, one author performed iterative, open
coding on the responses to identify emergent analytical themes. Another author then coded the
responses independently, after which both coders discursively identified four agglomerated themes:
“poor performance” (mentions of general poor performance or drastic errors), “unfair” (mentions
of bias against subgroups or sexism), “uninterpretable” (mentions of unintelligible reasoning or
outcomes), and “positive thoughts” (thoughts opposing the other 3 themes as well as general praise).
Themes are non-exclusive and may occur together in a given response. The resulting labels had
strong inter-coder agreement (Cohen’s x = 0.79). We plot the number of responses with agreement
from both coders in Figure 6 as a percentage of how many responses received labels in each
condition for the model-human experimental factor®. In total, 34 out of 46 non-empty responses
for the model and 44 out of 52 for the analyst received labels with agreement from the coders,
representing an aggregate labelled response rate of 44%. The remaining responses contained little
information, such as “no comment”. Although this response rate is fairly low, we present these
qualitative responses as motivating examples of the nuances in our participants’ perceptions of the
risk assessor. Information about quoted participants is available in Table 4.

Fairness and interpretability. We first note that the open-ended responses reinforce our quanti-
tative results illustrating that the model is perceived as less fair than the analyst. The statistical
model is thought to be unfair against women substantially more often than the analyst, with e.g.
P149° stating ‘Tt seemed to be most strongly biased regarding gender”. P78 went further, positing
that the “disparity between the model with respect to women in comparison to men was striking. In
no circumstance did the model predict a woman to pay back a loan regardless of their situation (e.g.,
employment, salary, loan history). And with very few exceptions, the model predicted men to pay back
the loan. To me this suggests a strong gender bias”. P166 was blunt about the model’s biases: ‘Tt was
a pretty sexist”. Compared to the 8 (24%) responses from participants in the model condition, only 4
(9%) from those in the analyst condition mentioned unfairness — of which 3 were tenuous: “seemed

8For additional information, we split responses by the unbiased-biased factor in Figure 8 (Appendix A).
9Participant identifiers are assigned before the comprehension check and thus may exceed n = 179.
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Participant Predictor Biases ‘ Participant Predictor Biases
4 Analyst Biased 146 Model Biased
8 Model Biased 147 Analyst Unbiased
16 Analyst Biased 148 Model Unbiased
19 Analyst Biased 149 Model Unbiased
20 Model Biased 159 Model Unbiased
34 Analyst Unbiased | 161 Analyst Biased
35 Model Unbiased | 166 Model Biased
38 Analyst Unbiased | 167 Analyst Unbiased
60 Model Biased 174 Analyst Biased
64 Model Biased 182 Model Biased
65 Analyst Biased 186 Analyst Biased
78 Model Biased 189 Model Biased
84 Analyst Biased 197 Analyst Unbiased
99 Analyst Biased 198 Analyst Unbiased
106 Analyst Biased 262 Model Biased
115 Analyst Biased 277 Analyst Unbiased

Table 4. Participants with featured responses in Section 4.3 and their assigned experimental conditions.
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Fig. 6. Number of open-ended responses mentioning each analytical theme on which both coders agree,
normalized by the total number of responses per condition that received at least one analytical theme.

a bit biased against women” (P84), ‘I think they had some bias in certain cases but I am not totally
sure why. It might have been based on age or gender?” (P147), and I think maybe the analyst didn’t
year [sic] women applicants fairly” (P4).

We find similar discrepancies in the perceived interpretability of the model versus analyst,
though participants were less assured in their criticisms because of their epistemic uncertainties.
With regards to the model, 12 (35%) participants stated that the model’s predictions were hard to
understand, such as ‘T wasn’t sure exactly how it came to its conclusions, as it wasn’t really clear’
(P159), ‘I think that it was rather confusing” (P182), and ‘I can’t figure out what made it get wrong
the people that it did” (P189). The 11 (25%) participants who mentioned they could not understand
the analyst also had very similar responses, e.g. “T could not figure out how the analysis [sic] was
calculating its decisions” (P115), but this represented a much smaller fraction of responses from
those in the analyst condition.

Thus, responses containing thoughts about fairness and interpretability echo our quantitative
results, with the participants being more likely to perceive the model in a negative way than the
analyst. This is especially noticeable for those discussing fairness and sexism in the model, reflecting

)
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our findings in Section 4.2 that biased errors amplify the perception gap between the analyst and
the model.

Performance. Nonetheless, we also note that participants were more likely to explicitly ascribe
poor performance to a human analyst (32%) than an algorithmic model (24%) in Figure 6. For
instance, P16 stated I feel like the credit analyst wasn’t very accurate. It frequently got things very
wrong, even when the income and credit history of the person did not suggest they would fail to pay
back the loan”. Similarly, P16, P98, and P161 noted harshness in the analyst like ‘T thought they
were too harsh many of the times” (P98), while P19, P34, P38, P167, P186, and P277 pointed out the
inconsistency between the analyst’s generally acceptable performance and occasional outliers e.g.
“Ithink at time it was right on, while other times it was way off ” (P186). Both are perhaps unsurprising
given that our experimental conditions, by design, all incorporate obvious false negatives for 4 out
of 10 loan applicants (see Table 1). Despite the relatively fewer participants in the model condition
mentioning performance, similar sub-themes of harshness (P60, P146) and inconsistency (P8, P20,
P64) also emerged in their responses.

There is therefore an apparent gap between our quantitative results about performance and
participants’ open-ended responses. We find that this could partially be because stated perceptions
of the model’s interpretability may override stated perceptions of its performance. While responses
about not understanding the analyst were often interlaced with considerations of performance, e.g.
“The credit analyst seemed to be all over the place. I couldn’t find any consistent patterns in the way
their decisions were being made” (P106), responses regarding the model’s uninterpretability were
short and essentially never mentioned performance like P189 above. Furthermore, the boundary
delineating responses about performance and responses about interpretability was also blurred for
coders - the poor-performance theme had the lowest inter-coder agreement (x = 0.67 vs. ¥ = 0.86
for the 3 other themes collectively). Thus, the elevated uncertainty surrounding uninterpretable
algorithmic predictions may in part account for why poor performance is mentioned more distinctly
by people who saw the human analyst.

Praise. The clearest result we found in our qualitative analysis is the asymmetric praise given to
the analyst (n = 11, 25%) versus the model (n = 2, 6%). Given that we only used false negatives in
our experimental manipulation (Table 1), we had expected responses to be purely critical of either
random or sexist loan denials. Instead, many praised the analyst, e.g. ‘T think the analyst was fair
and made the best decisions based on the information given” (P197). In fact, two participants who
saw the analyst provide biased predictions against females explicitly said the analyst was fair: T
thought they were generally fair and accurate” (P65) and ‘T think he/she was very fair” (P174).

In contrast, the two positive comments for the algorithm were hesitant, with P148 claiming “The
model was correct most of the time” and P8 stating ‘It seemed to be making very sound judgements
most of the time, but occasionally very different from what I thought.” Criticism of the algorithm was
unambiguous and harsh: “the statistical model is not ready to be used, it cannot be trusted in real life”
(P262) and ‘T thought it was bad. This is why humans are better. Why let models take our jobs?” (P35).
By comparison, the strongest critique we received about the analyst was more about job function
rather than trust: “he should go back to being a teller” (P99).

Overall, our qualitative results again paint a picture of the divergent perspectives around risk
assessments based on who makes the assessments. On the one hand, participants were more likely
to explicitly describe algorithmic predictions as less fair and less interpretable. On the other, they
were evidently more willing to praise the human analyst, despite it making identical predictions in
identical scenarios. Strikingly, while several participants highlighted the biased algorithm’s gender
bias and even sexism, others actually praised the biased analyst for being seemingly fair. This
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further reinforces our finding that biased errors amplify the gap between how algorithmic and
human risk assessments are evaluated favorably by observers.

5 DISCUSSION

Our results reveal a common pattern in how people perceive risk assessments made by humans
and algorithms. Despite yielding identical risk assessments, algorithmic predictions are perceived
to be less fair, less interpretable, less accurate, and less trustworthy for real-life decisions than
human predictions (RQ1). These effects materialize even after seeing just a single erroneous risk
assessment, and are exacerbated depending on whether the error is a result of systematic predictive
biases (RQ2) - to the extent that biased human assessments and unbiased algorithmic assessments
are viewed comparably. Participants’ asymmetric perceptions of human and algorithmic agents are
reflected further in their open-ended responses, with far fewer expressing positive sentiments or
praise regarding algorithmic assessments. In other words, our findings illustrate a human-algorithm
gap in how negatively risk assessments are perceived when they treat subgroups inequitably.

These findings contribute to the bodies of empirical literature on algorithm aversion and fairness.
On the one hand, an algorithms’ mathematical properties and whether its outcomes are fair,
understandable, and accurate can drastically alter whether people find it to be acceptable [5, 43, 44,
60, 64, 69]. On the other, an algorithm, qua algorithm, may not be trusted even for tasks in which it
quantifiably performs better than humans [22, 33, 34, 53]. Our work illustrates that in identical,
high-stakes risk assessment scenarios with the same information and outcomes, algorithms are
still judged more harshly than humans — both in terms of objective performance, and subjective
desiderata like fairness.

Our results thus indicate that more work is needed to understand how the framing of who
makes a risk assessment can alter its acceptability. Existing research on fairness has identified
the role of decision favorability [106], information on protected variables [89], different types
of explanation [16] on perceptions of fairness. Studies on interpretability also show that feature
visualizations [60], manipulating model transparency [83], and different types of explanations [67,
69, 75, 84, 111] can change whether people feel they understand algorithms. In contrast, our study
suggests that the ways in which a prediction- or decision-making agent is framed can influence
fairness and interpretability (alongside general suitability for risk assessment), even before people
are shown different characteristics of what and how individual decisions are made.

The intervening effects of biases on the human-algorithm perception gap, as shown in Figure 5,
further hint at how people perceive errors asymmetrically. Work on algorithm aversion has, for
example, identified that errors in algorithmic predictions are possibly more salient to observers,
leading to skewed preferences for predictions from humans [32, 33]. Our results extend this
phenomena by providing evidence that a single error from a biased model can further widen the
gap between human-made and machine-made predictions, not only of perceived performance
but also of perceived fairness and interpretability. We additionally find patterns suggesting that a
biased human and an unbiased algorithm are perceived comparably, and even that a biased human
appears slightly more acceptable than an unbiased one.

One speculative reason is therefore that mistakes in human-made assessments are expected to be
biased, such that errors made by machines are held to higher, non-human standards - not only for
imperfect performance [33] but also for opaqueness [109] and, in our case, inequitable treatment of
subgroups. With the systematic societal inequities across data-driven and algorithmic decision-
making systems [8, 20, 78, 79], how, then, can we separate the perceptions of who makes decisions
from the perceived unfairness of imperfect decisions themselves? After all, human predictions with
clear inequities may be more acceptable than machine predictions with substantially fewer biases
but identical error rates — a hypothesis for which our results provide some evidence. More work is
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therefore needed to help people distinguish between “who” and “what” when evaluating flawed
risk assessments against societal values like fairness and interpretability.

Beyond the framing of algorithmic predictions and the biases of individual predictors, our
work further contributes more broadly to the discussion of how justice in algorithmic systems
should be conceptualized. The differences in how predictions are perceived in identical situations
and outcomes empirically highlights the importance of justice frameworks that are not purely
outcomes-based or distributive [19, 36, 77, 87, 102]. Approaches like procedural justice [68, 92]
may be poised to better capture user considerations of decision-making characteristics that exist
in parallel to outcomes. For instance, the transparency of decision-making processes are not
necessarily coupled to equitable outcome distributions, but can still influence perceptions of
fairness [16, 65, 83, 84]. This is echoed by the interpretability effects we find in Figure 3 despite
providing identical information to participants. Similarly, the amount of control human stakeholders
can exert over both decision-making processes and outcomes also contribute to the acceptability
of how decisions are made [23, 34, 65]. Beyond tasks like risk assessments with individually
“objective”, quantifiable outcomes, procedural aspects of more subjective decision-making scenario
like content moderation [80] and discussion mediation [64] can also explain how people perceive
the legitimacy of decisions. In context of these findings, our work therefore suggests that a human
agent may be perceived as being more just by virtue of it — and its errors — being procedurally
more suitable to risk assessments compared to an algorithm. Nonetheless, while procedural justice
may explain the empirical degree to which observers find risk assessments to be acceptable, it may
not necessarily prescribe how risk assessments can be made objectively more ethically desirable.
We leave discussions of what constitutes moral decision-making processes to future work.

5.1 Limitations and Opportunities

Although we find clear differences in how human and algorithmic risk assessments are judged, our
work has several limitations. Our method employs a narrow operationalization of “bias” relative to
the plethora of ways in which algorithmic outcomes can be unfair [15, 24, 79, 102]. Even within
the realm of gender equity, our study of biases through the lens of binary gender labels does not
consider non-binary identities [50, 54, 93]. Although similar binarizing approaches are often used
in related work [18, 45, 56, 78, 89], more work needs to be done on how inequitable human and
algorithmic predictions across non-binary genders can elicit different fairness perceptions. For
our current research questions, we believe our method adequately operationalizes how certain
subgroups can be systematically disadvantaged by computational systems.

Another limitation is our study of risk assessments in isolated scenarios for predicting loan
repayment with high-skilled crowdworkers. While this enables us to remove potential noise and
interaction effects with other factors, such as the extent to which humans are involved in creating
the statistical model [53], it also does not fully capture the real-life intricacies of decision-making
based on risk assessments [78, 94, 95]. The physical deployment of risk-assessments as decision
aids, let alone actual as actual decision makers, is fraught with complex ethical concerns [7, 78, 95],
which may in turn amplify the human-algorithm perception gap in our experiment. Furthermore,
beyond risk assessments, algorithms are used for an ever-expanding range of tasks as described in
Section 2: tasks may be more subjective [22, 80], less socially impactful [76], require varying levels of
expertise [49, 76, 110], and involve multiple agents that are cooperative [52, 55] or competitive [38,
39]. Follow up work is therefore needed to understand how well our results generalize to other
situations in which algorithms are used to supplement or replace human judgment but do not have
all the distinct characteristics of risk assessments.

More broadly, our work illustrates the effects of attributing predictions to different types of
agents, but does not identify concrete ways of closing the human-algorithm perception gap. On the
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assumption that predictions ought to be evaluated mainly for how they distribute outcomes [19,
717, 87, 102], attributing predictions to an artificial agent may distract from the merits or flaws
that would otherwise be salient in a natural agent’s predictions. Thus, finding concrete ways of
reducing this human-algorithm perception gap is necessary to help stakeholders more clearly
evaluate predictors for their predictions, as opposed to who or what the predictors are.

Nonetheless, our results also open multiple pathways for exploring how risk assessment systems
can be designed to reduce this gap. For one, the literature we surveyed largely presents human and
algorithmic predictions either to different observers separately in a between-subject manner [33, 34],
to the same observers but as conceptual points of comparison in within-subject studies [63], or only
as algorithmic aids in the decision-making pipeline [43]. It remains untested if algorithmic risk
assessments can be supplemented with historical human predictions, e.g. by showing performance
information to observers demonstrating that the algorithm is fairer towards protected subgroups
than typical human experts. There are also promising procedural approaches that give observers
more control over algorithms [23, 34, 65], though these have rarely been applied to risk assessments,
and avenues of recourse over outcomes [71, 100, 101], though these have not been evaluated for
their empirical, perceived desirability. Furthermore, because of the apparent salience of first errors
in our study and in related work [76], interventions for reconciling perceptions of humans and
algorithms should be targeted at erroneous predictions. This could take the form of a feedback loop
after errors if they occur on a short time scale [110], or by identifying likely errors in low-confidence
predictions [111].

5.2 Conclusion

Algorithmic risk assessments are increasingly deployed to predict averse outcomes in domains
ranging from healthcare to criminal justice. In light of growing concerns over their potential for
exacerbating existing social inequities in high-stakes decision making processes, many strands of
research have attempted to develop ways of improving the inherent fairness of these automated
systems. We focus on a more fundamental question: whether identical assessments would be
perceived the same way if they were made by a human. Even though they are presented with the
same information and yield the same outcomes, we find that human predictions are systematically
thought to be more accurate, fair, understandable, and deployable in real-world systems. This
perception gap materializes after just a single erroneous risk assessment and is exacerbated in
the presence of identical biases against protected subgroups. Our work thus illustrates the need
for a deeper interrogation of how quantitative fairness criteria and human perceptions should be
balanced to build prosocial assessment systems.
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A ADDITIONAL INFORMATION

In this appendix, we provide two additional sets of information for readers. Figure 7 disaggregates
Figure 4 further by both experimental factors; our observations about the gap from a single error
remain the same in this variant. Figure 8 presents labelled open-ended responses in the bias
experimental factor, in which we find mostly expected patterns about the unfairness of biases
against protected subgroups. The discrepancies in responses about poor performance are again
attributable to their coupling to thoughts about uninterpretability, leading to the lower inter-coder
agreement detailed in Section 4.3.

Outcomes After Seeing Each Error in Each Condition

5 Performance Evaluation Perceived Fairness Perceived Interpretability Desire for Adoption
Predictor
Analyst
Model
Predictions
44 1 1 1 —e— Biased
—@- Unbiased
34
2 -
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Fig. 7. Version of Figure 4 with in-task measures further split by the unbiased versus biased experimental
manipulation.

Open-Ended Responses Within Qualitative Themes

Predictions
BN Unbiased
Biased

30

254

204

154

101

% of Labelled Responses

o

Poor Performance Unfair Uninterpretable Positive
Analytical Theme

Fig. 8. Version of Figure 6 with responses split by the unbiased versus biased experimental factor, with
normalizing denominators respectively of 32 and 46 labelled responses.
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