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Computational social science in 7 easy pieces

Week Date Topic Reviews Due ;2::;:‘;:
1 9/4 Introduction to computational social science [Slides] Ch. 1
2 9/11 Introduction to computational social science cont'd [Slides] Ch. 1
* 3 9/18 Observational studies 1 [Video] 9/17 9:00pm Ch. 2
* 4 9/25 Observational studies 2 9/24 9:00pm Ch. 2
* 5 10/2 Experiments 1 10/1 9:00pm Ch. 4
* 6 10/9 Experiments 2 10/8 9:00pm Ch. 4
7 10/16 Project proposals
* 8 10/23 Asking questions 10/22 9:00pm Ch. 3
* 9 11/6 Applying machine learning 11/5 9:00pm
* 10 11/13 Ethics in computational social science 11/12 9:00pm Ch. 6
11 11/20 Project presentations (Part 1)
12 11/27 Project presentations (Part 2)
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Ways of doing computational social science

Observational Human Natural SUrvevs Field Lab
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Observational analyses of existing data

Massive datasets of all kinds of human behaviour are now available tfor study

Wikipedia, GPS traces, health databases, Facebook, Twitter, Reddit,
reviews, purchases, dating, invitations, exercise apps, etc., etc...

Key part of the “socioscope”: huge traces of things that we couldn’t see
before

Lack ot detail/fidelity in individual records is hopetully made up for by large
numbers of records (small noisy errors cancel out, big patterns are signal)

“Big data” / "Found data”

Field
experiments studies




Ten common characteristics of big data

Big: statistical power, rare events, fine resolution
Always-on: unexpected events, real-time measurement

Nonreactive: measurement probably won't change behaviour

Incomplete: probably won't have the ideal information you want

Inaccessible: difficult to access (gov't, companies)

Nonrepresentative: bad out-of-sample generalization (good in-sample)
Drifting: Population drift, usage drift, system dritt

Algorithmically confounded: want to study behaviour, not an algorithm
Dirty: Junk, spam

Sensitive: Private, hard to tell what's sensitive




Observing Behaviour: Three research strategies

1. Counting things
2. Forecasting/nowcasting

3. Approximating experiments

Field
experiments studies




Observing Behaviour: 1. Counting Things

Example: Measuring viral vs. broadcast diffusion on Twitter

With newfound datasets and computational resources, many valuable initial contributions

are measurements of quantities we couldn’t measure before = counting at scale




Observing Behaviour: 2. Nowcasting

Google Flu Trends

|dea: find 50 most correlated search query volume trends with flu data




Observing Behaviour: 2. Nowcasting

The flu has a 1-2 week lag from when cases are reported to when the CDC
releases official stats

® G = Flu Tren
Published CDC reports,
about two weeks behind,
don't yet show this increase
;} | Google Flu Trends detects a

significant increase in flu activity.
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Figure 2 | A comparison of model estimates for the mid-Atlantic region
(black) against CDC-reported ILI percentages (red), including points over
which the model was fit and validated. A correlation of 0.85 was obtained
over 128 points from this region to which the model was fit, whereas a
correlation of 0.96 was obtained over 42 validation points. Dotted lines
indicate 95% prediction intervals. The region comprises New York, New
Jersey and Pennsylvania.

Observing Behaviour: 2. Nowcasting



% ILI

Observing Behaviour: 2. Nowcasting

10 = Google Flu Lagged CDC
Google Flu + (DC  —— (CDC
8 71 .
. Google estimates more
6 — | than double CDC estimates
.
4-
- \!
2 —
0 —— T T T T
07/01/09 07/01/10 07/01/11 07/01/12 07/01/13

Soon after Google Flu Trends launched, it was drastically off




Observing Behaviour: 2. Nowcasting

Media attention

“Bird flu”, “swine ftlu”
Algorithm changes

Starting suggesting search terms
"Social hacking”

Hey look we can screw up Google's flu predictions

Field
experiments studies




Correlation and causation

Sociology doctorates awarded (US)
correlates with

Deaths caused by anticoagulants
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Correlation and causation

People who died by falling out of their bed

correlates with
Lawyers in Puerto Rico

= People who died by falling out of their bed

Lawyers in Puerto Rico
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Perils of big data

"When you have large amounts of data, your appetite for hypotheses tends to get even
larger. And if it's growing faster than the statistical strength of the data, then many of your

inferences are likely to be false. They are likely to be white noise.”
— Michael Jordan




Perils of big data

"When you have large amounts of data, your appetite for hypotheses tends to get even
larger. And if it's growing faster than the statistical strength of the data, then many of your
inferences are likely to be false. They are likely to be white noise.”

— Michael Jordan




Observing Behaviour: 3. Approximating Experiments

Some clever strategies allow us to do “causal inference”: make causal claims from
observational data (i.e. arrive at experiment-like conclusions without actually running an
experiment)

One well-known technique is instrumental variables: exploit natural variation in something
to make a causal claim

Rain — Exercise

Friends exercising = You exercise?
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Experiments

On the other end of the spectrum is experimentation

The goal is to learn about causal relationships (cause-and-effect questions)

The strategy is to directly manipulate the environment and observe the consequences

Design the ideal scenario that will create just
the data you need to answer your question




Experiments

Here, researchers intervene in the world to isolate and study a specific question

Nomenclature:

"Experiment”: perturb and observe

"Randomized controlled experiment”: Intervene for one group, don’t for another (randomly)

Correlation is not causation

Observational data often riddled by unknown or hard-to-control

E.g. Do students learn more in schools that offer high teacher salaries?

What's an observational way to study this question?

nat's wrong with it?

W
What's an experimental way to study this question?
W

nat’s wrong with it?




Experiments

Online Digital
A

v

Offline Analog

Lab = » Field

More control More real




Experiments

Digital | cowdworkers Users
A
v ° °
Analog Undergrads Citizens

Lab < > Field

HHHHH




Three major components of rich experiments

1. Validity
2. Heterogeneity

3. Mechanisms




Three major components of rich experiments: 1. Validity

Validity: How general are the results?

Types of validity:
1. Statistical conclusion validity: were the stats done right?
2. Construct validity: are we measuring the right thing?

3. Internal validity: was the experiment done right?

4. External validity: is this applicable in other settings?




Three major components of rich experiments: 2. Heterogeneity

Barebones experiment: measure the average treatment effect (ATE)
But in social research, people almost always vary.

Digital research presents many more opportunities to measure how
causes affect people differently

HHHHH




Three major components of rich experiments: 3.
Mechanisms

Barebones experiment: measure what happened.

Mechanisms: why and how did it happen?

. Eat > No . Eat No
. limes scurvy . limes scurvy
Increase

vitamin C

Causal effect Causal effect
without mechanism with mechanism




Ways of doing computational social science

Observational Human Natural Fielo
. . Surveys
analyses computation | experiments

Experiments

experiments




Human computation

Online crowdsourcing platforms allow dividing work into microtasks

Human-in-the-loop computing, modern-day lab studies, mass collaboration to build big

resources (Wikipedia etc.

amazonmechanical turk

Your Account

,‘ HITs ', Qualifications

Dietmar Hafner |

367,700 HITs
available now

All HITs | HITs Available To You | HITs Assigned To You

~

\

~

N

/
7

\

/

\

\
.

™

/
7

~

HITs v 0.00 || |
All HITs
1-10 of 2317 Results
Sort by: | HIT Creation Date (newest first) ¥ @ Show all details | Hide all details 12345 > Next » Last
rmjﬂmmm Reguest Qualification (Why?) | View a HIT in this group\
Requester: CopyText Inc. HIT Expiration Date: Jul 10, 2015 (9 minutes 52 seconds) Reward: $0.01
Time Allotted: 4 minutes HITs Available: 35
fwhere are you? (2 second HIT) -- USA Not Qualified to work on this HIT (Why?) | View a HIT in this group
Requester: techlist HIT Expiration Date: Jul 10, 2015 (9 minutes 52 seconds) Reward: $0.02
Time Allotted: 1 minute 30 seconds HITs Available: 1067
Where are vou? (2 second HIT) -- Not USA or India View a HIT in this group
Requester: techlist HIT Expiration Date: Jul 10, 2015 (9 minutes 52 seconds) Reward: $0.02
Time Allotted: 1 minute 30 seconds HITs Available: 1073
(Where are you? (2 second HIT) -- India Not Qualified to work on this HIT (Why?) | View a HIT in this qroup\
Requester: techlist HIT Expiration Date: Jul 10, 2015 (9 minutes 51 seconds) Reward: $0.02
Time Allotted: 1 minute 30 seconds HITs Available: 1071
fmggg;sg_zg_wmm Request Qualification (Why?) | View a HIT in this group\
Requester: Crowdsurf Support HIT Expiration Date: Jul 8, 2016 (51 weeks 6 days) Reward: $0.20
Time Allotted: 6 hours HITs Available: 7
(" Find the count of comments on a website View a HIT in this group
Requester: SDG Production HIT Expiration Date: Jul 13, 2015 (2 days 23 hours) Reward: $0.02
Time Allotted: 10 minutes HITs Available: 1
rCIassi Receipt Not Qualified to work on this HIT (Why?) | View a HIT in this group
Requester: Jon Brelig HIT Expiration Date: Jul 17, 2015 (6 days 23 hours) Reward: $0.02

Time Allotted:

20 minutes

HITs Available:

7948




Ways of doing computational social science

Observational Human Natural Fielo
. . Surveys
analyses computation | experiments

Experiments

experiments




Natural experiments

Sometimes observational data has some random component you can exploit, and analyze
as a "natural” experiment

Cholera outbreak in London in 1850s



Natural experiments

Physician John Snow produced a map suggesting particular water was the culprit

Two main water suppliers: one from downstream Thames where raw sewage was dumped in
the water (high attack rates), and one from upstream (low attack rates)

Which supplier you had was arbitrary (varied even within same house, same neighbourhood,
etc.)

Exposure to polluted water was as-if random

Now: in large datasets, more opportunities to identity
and argue for as-if random assignment




Ways of doing computational social science
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Surveys: asking questions

Social research has a unique advantage: we can
ask our subjects what they're thinking!

. Enriched asking
Still the best way to learn the answer to many

guestions
:3ekcord
. : . ig data nKage urve
In the digital era, there are new ways of asking e [ “ae
guestions
Used for
research

Amplified asking

Big data
source

Big data
source

Estimate Survey
model data
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Field experiments

Introducing a treatment into a real system

Much more possible now with algorithmic systems



Voting experiment on Faceboo

Figure 1
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The experiment and direct effects

a, b, Examples of the informational message and social message Facebook treatments (a) and their direct effect on voting behaviour (b).
Vertical lines indicate s.e.m. (they are too small to be seen for the first two bars).

~300,000 more validated votes



Al & Society: Algorithmic decision-making

St. George's Hospital in the UK developed an algorithm to sort medical school applicants.
Algorithm trained to mimic past admissions decisions made by humans.

But past decisions were biased against women and minorities. It codified discrimination.



Web search ads for “Kristen Haring”

Ads by Google

We Found:Kristen Haring
1) Contact Kristen Haring - Free Info! 2) Current Phone,

Address & More.
www.peoplesmart.com/Kristen

Search by Phone Search by Email
Background Checks Search by Address
Public Records Criminal Records

Kristen Haring

Public Records Found For: Kristen Haring. Search Now.
www.publicrecords.comy




Web search ads tor “Latanya Farrell”

Ads related to latanya farrell (O

Latanya Farrell. Arrested?
www.instantcheckmate.com/

1) Enter Name and State. 2) Access Full Background Checks Instantly.

Latanya Farrell
www.publicrecords.com/
Public Records Found For: Latanya Farrell. View Now.




Image labeling gone wrong

Airplanes

Graduation

Jacky Alciné
@jackyalcine

Google Photos, y'all fucked up. My friend's not a gorilla.
8:22 PM - Jun 28, 2015

O 226 113214 Q) 2,067



Image searching for “CEO”
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Image searching for “CEO”

Last nail in the coftin: this picture is from an Onion article.



Ethics and privacy

Experimental evidence of massive-scale emotional
contagion through social networks

Adam D. . Kramer®', Jamie E. Guillory?, and Jeffrey T. Hancock"*

Facebook's Users Outraged Over

Emotion Experiment

Facebook reveals news feed experiment

to control emotions  gacebook emotion experiment sparks

criticism

Facebook Tinkers With Users’ Emotions
in News Feed Experiment, Stirring Qutcry

Everything We Know
Facebook conducted secret psychology experiment on About FacebooKk's Secret
users’ emotions Mood Manipulation

Experiment



Computational social science

Game-changing opportunity to improve our understanding of human behaviour and have
positive societal impact.

Doing so requires addressing serious technical, scientific, and ethical challenges.
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Observational studies

Article

Human mobility networks reveal increased
segregationinlargecities

Nature, 2023
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"Using mobile phone mobility data to represent 1.6 billion

real-world exposures among 9.6 million people in the

United States, we measure exposure segregation across
382 metropolitan statistical areas (MSAs) and 2,829

counties.”
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Article

Observational studies 1

Onlineimages amplify gender bias

Nature, 2024
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Observational studies 2

Dissecting racial bias in an algorithm used to manage
the health of populations

Ziad Obermeyer™?*, Brian Powers>, Christine Vogeli*, Sendhil Mullainathan®*+

Science’ 2021 Race -—e¢—-Black White

A Hypertension: Fraction clinic visits with SBP >139 mmHg B Diabetes severity: HbA1c

Measuring algorithmic bias in a
high-stakes health setting
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Observational studies 2

HUMAN DECISIONS AND MACHINE PREDICTIONS*

JON KLEINBERG

Comparing human judges with machine learning
T on 758K pretrial bail decisions after arrests

JENS LUDWIG
SENDHIL MULLAINATHAN

. Who Would be Jailed Who Judges
Quarterly Journal of Economics, 2017 if Jailed by Predicted Risk Actually Jail
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Experiments |

On the Conversational persuaSiveness This preregistered study examines Al-driven persuasion

in a controlled setting, where participants engaged in short

0fGPT‘4 multiround debates. Participants were randomly assigned to 1 of

12 conditions ina 2 x 2 x 3 design: (1) human or GPT-4 debate

opponent; (2) opponent with or without access to
Nature Human Behaviour, 2025 sociodemographic participant data; (3) debate topic of low,
medium or high opinion strength.
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Experiments |

How human_Al feedbaCk loops alter In a series of experiments (n = 1,401 participants), we reveal
human perceptual’ emOtional and SOCiaI a feedback loop where human-Al interactions alter

processes underlying human perceptual, emotional and

J“dgements social judgements, subsequently amplifying biases in

humans.

Nature Human Behaviour, 2024
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Experiments 2

Shifting attention toaccuracy canreduce Why do people share misinformation,
misinformationonline and how can we reduce this?

Nature, 2021
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Experiments 2

Generative Al without guardrails can harm Iearning: Evidence Learning is critical to long-term productivity, especially since generativeAl is
from high school mathematics fallible and users must check its outputs. We study this question via a

fieldexperiment where we provide nearly a thousand high school math students
I I I I Treatment
i 2 3 4

with accessto generative Al tutors.
Session Session

PNAS, 2025
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Sdurveys

Machinelearningand phonedatacan

improve targeting of humanitarian aid

Nature, 2022
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Here we show that data from mobile phone networks
can improve the targeting of humanitarian assistance.
Our approach uses traditional survey data to train
machine-learning algorithms to recognize patterns of
poverty in mobile phone data; the trained algorithms can
then prioritize aid to the poorest mobile subscribers.
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Sdurveys

WEb-brOWSing patterns reﬂect and Shape Humans spend on average 6.5 hours a day online.

A large portion of that time is dedicated to

mOOd and mental health information-seeking. How does this activity impact

mental health?
Nature Human Behaviour, 2024
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Applying Machine Learning

Al can help humans find common ground
in democratic deliberation

Science, 2024

In this study, we trained an artificial intelligence (Al) to mediate human
deliberation. Using participants' personal opinions and critiques, the Al
mediator iteratively generates and refines statements that express common
ground among the group on social or political issues. Participants (N =
5734) preferred Al-generated statements to those written by human
mediators, rating them as more informative, clear, and unbiased.

A Deliberation Protocol
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1>2 >..>16 E 6llallisl]2 In addition, we feel that free childcare should be provided from a young age, and that it
. ﬁ>m> >ﬁ E 21l sl 4 [l10 should be provided in a way that supports children's development and learning, and not
. o ..E. S < just as a childminding service. However, we do not feel that free childcare should be
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O . .
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Applying Machine Learning

Durably reducing conspiracy beliefs
through dialogues with Al

Science, 2024

r
Step 1: Open-ended Conspiracy Assessment Step 2: Al Summarization Step 3: Participant-Specific Question

c The 911 attacks. I've seen many stories and videos on 911

) and how it could have been deliberately staged. The o ‘ ,

& government was behind the attacks. An example is WTC 7. We used an artificial intelligence tool to summarize your statement as follows:

> REHIEE [T B8 2 Rt G W L e 8T e | The 9/11 attacks were orchestrated by the government, with events

o B L Wy e e g e i like the collapse of WTC 7 and then-President George W. Bush's

© peoina il sdlneans sttt s parse e Lz unalarmed reaction in a classroom serving as key evidence.

a then-President George W. Bush in a classroom with small

) children. He got news of the attacks while he was attending On a scale of 0% to 100%, please indicate your level of confidence that this

c the school, however, he just kept listening to the kids and statement is true.

8 didn't seem the least bit alarmed about the attacks. After

watching a lot of these videos and shows, | concluded that . . - 1 0 0 0/ - s
the conspiracy theorists might be correct. d \ 0 u J

\

We leveraged developments in generative artificial intelligence and
engaged conspiracy believers in personalized evidence-based
dialogues with GPT-4 Turbo. The intervention reduced conspiracy
belief by ~20%. The effect remained 2 months later, generalized
across a wide range of conspiracy theories, and occurred even

among participants with deeply entrenched beliefs

C
100 | S 7
| P
& B ¢
' ¢
) ®
’ N } ¢ _ { +
75 e | } +
= ‘
D ¢ 1
o ¢
E v
. .
E 50 g
o
et
D
o
o
25
0
o) o\ o\ oo o\o o\ o\ o\ \o) o)
(ﬁo \ \b‘\ b,\0\ Q?.)\ be \ Cbn_)O\ o)q\ o o\ \<’§ \ Q;\O\\
be' & & & N \g N\e N\e N\ &
S ) N O 2 O &) O Q&
4° § & \4 N ® & © @ &
2 ® ) 2 S ? @ R
> O O R N S &
o) d S & i &
<@ {D 9 O &
3 3 Q° o d &
< P 3 N NS 3
\© O &
X\ N Q
Q} N . 6@
& Q° >
&
\{ ?



Ethics in computational social science

In this pre-registered study, we conduct the first large-scale
field experiment on LLMs' persuasiveness, carried out

within r/ChangeMyView, a Reddit community of almost 4M
users and ranking among the top 1% ot subreddits by size.

Can AI Change Your View? Evidence from a
Large-Scale Online Field Experiment

| eaked conference submission
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Ethics in computational social science

Deep Neural Networks Are More Accurate Than Humans at Detecting "We used deep neural networks to extract features from
Sexual Orientation From Facial Images 35,326 facial images. These features were entered into a

logistic regression aimed at classifying sexual orientation.”

| eaked conference submission
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Computational social science in 7 easy pieces

Week Date Topic Reviews Due ;2::;:‘;:
1 9/4 Introduction to computational social science [Slides] Ch. 1
2 9/11 Introduction to computational social science cont'd [Slides] Ch. 1
* 3 9/18 Observational studies 1 [Video] 9/17 9:00pm Ch. 2
* 4 9/25 Observational studies 2 9/24 9:00pm Ch. 2
* 5 10/2 Experiments 1 10/1 9:00pm Ch. 4
* 6 10/9 Experiments 2 10/8 9:00pm Ch. 4
7 10/16 Project proposals
* 8 10/23 Asking questions 10/22 9:00pm Ch. 3
* 9 11/6 Applying machine learning 11/5 9:00pm
* 10 11/13 Ethics in computational social science 11/12 9:00pm Ch. 6
11 11/20 Project presentations (Part 1)
12 11/27 Project presentations (Part 2)

Readymades Custommades




Logistics

Course grades:
35% Project (proposal, presentation, report)
25% Reviews (relevance, quality, shows thought)
15% Participation (quality not quantity)
15% Assignments

10% Paper discussion leading (clarity, organization, discussion provoking)



Logistics

Course webpage: http://www.cs.toronto.edu/~ashton/csc2552/

Due Wednesday at 9pm: Reviews ot the two papers we will discuss
Reviews will be submitted on MarkUs in PDF format

In-class discussions: 2-3 people will present each paper

Who wants to go next week? (fun!)

Focus on discussion and critical review and questions rather than the material since
everyone will have read the paper

Come prepared with discussion questions and opinions

Todo: log in to MarkUs (link is on course webpage)

First reviews due next week


http://www.cs.toronto.edu/~ashton/csc2552/

